首页> 外文期刊>Control and Intelligent Systems >MODELLING, IDENTIFICATION, AND COMPENSATION OF COMPLEX HYSTERETIC AND LOG(t)-TYPE CREEP NONLINEARITIES
【24h】

MODELLING, IDENTIFICATION, AND COMPENSATION OF COMPLEX HYSTERETIC AND LOG(t)-TYPE CREEP NONLINEARITIES

机译:迟滞和对数(t)型蠕变非线性的建模,识别和补偿

获取原文
获取原文并翻译 | 示例
           

摘要

Undesired complex hysteretic nonlinearities and complex log(t)-type creep dynamics are present to varying degrees in virtually all smart-material-based sensors and actuators provided that they are driven with sufficiently high amplitudes. In motion and active vibration control applications, for example, these nonlinearities can excite unwanted dynamics, which leads in the best case to reduced closed-loop system performance and in the worst case to unstable closed-loop system operation, This necessitates the development of purely phenomenological models that characterize these types of nonlinearities and dynamics in a way that is sufficiently accurate, robust, amenable to control design for compensation, and efficient enough for use in real-time applications. To fulfill these demanding requirements this article describes a new compensator design method for combined complex hysteretic nonlinearities and complex log(t)-type creep dynamics based on the so-called Prandtl-Ishlinskii approach. The underlying parameter identification problem, which has to be solved to obtain a suitable compensator, can be represented by a quadratic optimization problem that produces the best least-square approximation for the measured input-output data of the real combined hysteretic nonlinear ity and creep dynamics, Special linear inequality and equality constraints for the parameters guarantee the unique solvability of the identification problem, the invertability of the identified model, and thus a reliable compensator design procedure Finally, the compensator design method is used to generate an inverse feedforward controller for the simultaneous compensation of the hysteretic nonlinearities and the log(t)-type creep dynamics of a piezoelectric stack actuator. In comparison with the conventionally controlled micropositioning stage with a nonlinearity error of about 14%, the inverse controlled micropositioning stage exhibits only about 1.7% error.
机译:假设所有以智能材料为基础的传感器和执行器以足够高的幅度驱动,那么它们在不同程度上都会出现不期望的复杂磁滞非线性和复杂log(t)型蠕变动力学。例如,在运动和主动振动控制应用中,这些非线性会激发不想要的动力学,这在最佳情况下会导致闭环系统性能下降,在最坏的情况下会导致闭环系统运行不稳定,因此有必要进行纯粹的开发。现象模型,以足够准确,可靠,易于控制的补偿设计以及足以用于实时应用的方式表征这些类型的非线性和动力学。为了满足这些苛刻的要求,本文介绍了一种新的补偿器设计方法,该方法基于所谓的Prandtl-Ishlinskii方法,将复杂的磁滞非线性和复杂的log(t)型蠕变动力学组合在一起。为获得合适的补偿器而必须解决的基本参数识别问题可以由二次优化问题表示,该二次优化问题可为实测组合的滞回非线性和蠕变动力学的测得的输入-输出数据产生最佳的最小二乘近似。 ,针对参数的特殊线性不等式和等式约束保证了识别问题的独特可解性,所识别模型的可逆性,从而确保了可靠的补偿器设计过程。最后,使用补偿器设计方法生成了一个同时进行逆前馈的控制器补偿压电叠层致动器的磁滞非线性和log(t)型蠕变动力学。与具有约14%的非线性误差的常规控制的微定位平台相比,逆控制的微定位平台仅表现出约1.7%的误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号