首页> 外文期刊>Control Engineering Practice >Disturbance rejection control of air-fuel ratio with transport-delay in engines
【24h】

Disturbance rejection control of air-fuel ratio with transport-delay in engines

机译:发动机运输延迟对空燃比的干扰抑制控制

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, an air-fuel ratio (AFR) controller is proposed for gasoline engines, to address the control challenges in the engine air flow rate estimation uncertainty and the exhaust gas transport delay. A physics-based AFR model is developed, in which two online correction factors are introduced for model accuracy improvement. The discrepancy of the model from the real plant is lumped as an extended state denoted as "total disturbance". An extended state predictor observer (ESPO) is then deployed to estimate the total disturbance and predict the AFR. By canceling the total disturbance in real-time and using the predicted AFR as the output to be controlled, the plant is enforced to behave as a first-order linear system, which is easy to control. Since the estimation capability of ESPO is limited by the transport delay, a recursive least square (RLS) estimator is designed to reduce the model estimation error and total disturbance through adjusting model parameters. This is achieved by using the historical data of the predicted AFR and the corresponding fuel amount. Experimental validation is conducted in a gasoline engine test bench. Results show that the ESPO reduces the settling time of AFR by 41% and 35% respectively, compared to the results with the conventional extended state observer (ESO) and input-delay ESO in step tests of the target AFR. The deviation of AFR from the target is reduced by 35%, 27%, and 32% respectively by using the RLS estimator in step tests of throttle position, exhaust valve closing timing, and intake valve closing timing.
机译:在本文中,提出了一种用于汽油发动机的空燃比(AFR)控制器,以解决发动机空气流量估算不确定性和废气传输延迟方面的控制难题。开发了基于物理的AFR模型,其中引入了两个在线校正因子以提高模型精度。模型与实际工厂的差异归为表示为“总扰动”的扩展状态。然后部署扩展状态预测器观察器(ESPO)来估计总干扰并预测AFR。通过实时消除总扰动并将预​​测的AFR用作要控制的输出,该工厂被强制执行为一阶线性系统,易于控制。由于ESPO的估计能力受到传输延迟的限制,因此设计了递归最小二乘(RLS)估计器,以通过调整模型参数来减少模型估计误差和总干扰。这是通过使用预测AFR的历史数据和相应的燃油量实现的。实验验证是在汽油发动机试验台上进行的。结果表明,与在目标AFR的步进测试中使用常规扩展状态观察器(ESO)和输入延迟ESO的结果相比,ESPO分别将AFR的建立时间减少了41%和35%。通过在节气门位置,排气门关闭正时和进气门关闭正时的逐步测试中使用RLS估计器,AFR与目标的偏差分别减少了35%,27%和32%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号