...
首页> 外文期刊>Construction and Building Materials >Combined effect of asphalt concrete cross-anisotropy and temperature variation on pavement stress-strain under dynamic loading
【24h】

Combined effect of asphalt concrete cross-anisotropy and temperature variation on pavement stress-strain under dynamic loading

机译:动态荷载下沥青混凝土横观各向异性和温度变化对路面应力应变的综合影响

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigates the combined effects of asphalt concrete (AC) cross-anisotropy and temperature on asphalt pavement's stress-strain under moving wheel loads. To facilitate this study, a dynamic Finite Element Model (FEM) of an instrumented pavement section on Interstate-40 (I-40) near Albuquerque, New Mexico, is developed in ABAQU5 incorporating depth-temperature variations in the AC layer under a truck wheel loading. Cross-anisotropy in the model is defined as the ratio of horizontal to vertical modulus (n-value) of the AC. Field compacted AC cores were collected from the instrumented pavement section and tested in the laboratory to determine the n-value and viscoelastic parameters, which are incorporated in the FEM model using the User Defined Material (UMAT) interface in ABAQUS. Model is validated using field measured deflections and strains values under Falling Weight Deflectometer (FWD) test. The validated model is used for a parametric study by varying n-values of AC material under different pavement temperatures. It is observed that the horizontal tensile strain at bottom of the AC layer decreases as the n-value approaches 1.0 (isotropy). It indicates that the horizontal tensile strain decreases as the horizontal modulus of the AC increases. It is also observed that the vertical strains on top of pavement layers decreases with an increase in n-value. It indicates that increase in horizontal modulus of the AC leads to decrease in the vertical strains of pavement layers. The parametric study based on pavement temperature variation shows that horizontal tensile strain at bottom of the AC layer as well as vertical strains on top of AC, base, subbase, and subgrade are highly sensitive to temperature variation in AC layer. (C)2015 Elsevier Ltd. All rights reserved.
机译:本研究探讨了轮式荷载作用下沥青混凝土(AC)交叉各向异性和温度对沥青路面应力应变的综合影响。为促进这项研究,在ABAQU5中开发了新墨西哥州阿尔伯克基附近40号州际公路(I-40)上仪表路面部分的动态有限元模型(FEM),该模型结合了车轮下AC层的深度-温度变化。加载中。模型中的交叉各向异性定义为AC的水平模量与垂直模量之比(n值)。从仪表路面部分收集现场压实的交流电芯,并在实验室进行测试以确定n值和粘弹性参数,这些参数使用ABAQUS中的用户定义材料(UMAT)界面并入FEM模型。在落锤挠度计(FWD)测试中,使用现场测得的挠度和应变值对模型进行验证。经过验证的模型可通过在不同的路面温度下改变AC材料的n值来进行参数研究。观察到,随着n值接近1.0(各向同性),AC层底部的水平拉伸应变降低。这表明水平拉伸应变随着AC水平模量的增加而减小。还可以观察到,路面层顶部的垂直应变随n值的增加而减小。这表明交流电的水平模量的增加导致路面层的垂直应变的减小。基于路面温度变化的参数研究表明,AC层底部的水平拉伸应变以及AC,基础,路基和路基顶部的垂直应变对AC层的温度变化高度敏感。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号