首页> 外文期刊>Construction and Building Materials >Hollow silica nanospheres as thermal insulation materials for construction: Impact of their morphologies as a function of synthesis pathways and starting materials
【24h】

Hollow silica nanospheres as thermal insulation materials for construction: Impact of their morphologies as a function of synthesis pathways and starting materials

机译:中空二氧化硅纳米球作为建筑隔热材料:形态对合成途径和起始材料的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Hollow silica nanospheres (HSNS) show a promising potential to become good thermal insulators with low thermal conductivity values for construction purposes. The thermal conductivity of HSNSs is dependent on their structural features such as sizes (inner diameter and shell thickness) and shell structures (porous or dense), which are affected by the synthetic methods and procedures including reaction medium, polystyrene template, and silica precursor. Formation of thermally insulating HSNS was favoured by alkaline reaction, whereby highly porous silica shells were formed, promoting less silica per volume of material, thus a lower solid state thermal conductivity. The Knudsen effect is in general reducing the gas thermal conductivity including the gas and pore wall interaction for materials with pore diameters in the nanometer range, which is also valid for our HSNS reported here. Further decreasing the pore sizes would invoke a higher impact from the Knudsen effect. The additional insulating effect of the inter-silica voids (median diameter D-50 approximate to 15 nm) within the shell coating contributed also to the insulating properties of HSNS. The synthesis route with tetraethyl orthosilicate (TEOS) was more robust and produced more porous silica shells than the one with water glass (Na2SiO3, WG), although the latter might represent a greener synthetic method. (C) 2018 Elsevier Ltd. All rights reserved.
机译:中空二氧化硅纳米球(HSNS)具有成为建筑用途,具有低导热系数的良好绝热材料的潜力。 HSNS的导热性取决于它们的结构特征,例如尺寸(内径和壳厚度)和壳结构(多孔或致密),它们受合成方法和程序的影响,包括反应介质,聚苯乙烯模板和二氧化硅前体。碱性反应有利于形成绝热的HSNS,从而形成高度多孔的二氧化硅壳,每单位体积的材料促进较少的二氧化硅,从而降低固态热导率。克努森效应通常会降低气体的热导率,包括孔径在纳米范围内的材料的气体和孔壁相互作用,这对于此处报道的HSNS也有效。进一步减小孔径将引起克努森效应的更大影响。壳涂层内的二氧化硅间空隙(中值直径D-50约15 nm)的附加绝缘效果也有助于HSNS的绝缘性能。原硅酸四乙酯(TEOS)的合成路线比水玻璃(Na2SiO3,WG)的合成路线更坚固并且产生更多的多孔二氧化硅壳,尽管后者可能代表了一种更绿色的合成方法。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号