...
首页> 外文期刊>Construction and Building Materials >Predicting the mechanical properties of cement mortar using the support vector machine approach
【24h】

Predicting the mechanical properties of cement mortar using the support vector machine approach

机译:使用支持向量机方法预测水泥砂浆的机械性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, in order to predict the flexural strength and compressive strength of cement mortar containing nano-silica (NS) and micro-silica (MS), the possibility of using the support vector machine (SVM) approach was investigated through four different kernels, including radial basis function (RBF), polynomial, linear, and sigmoid. The input parameters were employed based on a dataset containing 32 mixtures, 32 flexural specimens, 480 compressive specimens, and 7 mix design variables, namely water/cement ratio (W/C), sand/cement ratio (S/C), nano-silica/cement ratio (NS/C), micro-silica/ cement ratio (MS/C), age and porosity of specimens. Numerical results showed that the RBF kernel generally performs better and gives more accurate results compared to the polynomial, linear, and sigmoid kernels. In case the porosity is considered as an input parameter, the values of the root mean square error of SVM with RBF kernel in the prediction of flexural strength and compressive strength are 0.2909 (correlation coefficient of R-2 = 0.9970) and 1.2969 (R-2 = 0.9987), respectively. Moreover, the cement mortar strength was predicted using the multilayer perceptron (MLP) neural network, radial basis function (RBF) network, and general regression neural network (GRNN) methods. The obtained results were then compared with the results of SVM based on RBF kernel (SVM-RBF). The comparative evaluation in the SVM models was carried out in two cases: in the first case, the porosity is not considered as an input parameter while in the second case the porosity included in the input parameters. The results indicate when the porosity is considered as the input parameter, higher accuracy and better results would be obtained. The sensitivity analysis was also carried out to evaluate the effects of input parameters against the predicted responses. To validate the proposed SVM models, 86 flexural data as well as 266 compressive data were considered from literature and then the flexural strength and compressive strength of the cement mortar are predicted using the support vector regression (SVR) kernels. The results of this study show that the SVM-RBF is a relatively new, powerful, and alternative method for predicting the flexural strength and compressive strength of the cement mortar containing nano-and micro-silica. (C) 2021 Elsevier Ltd. All rights reserved.
机译:在本文中,为了预测含有纳米二氧化硅(NS)和微二氧化硅(MS)的水泥砂浆的弯曲强度和抗压强度,通过四种不同的核来研究使用支撑载体机(SVM)方法的可能性,包括径向基函数(RBF),多项式,线性和乙状胺。基于包含32个混合物,32个弯曲试样,480个压缩试样的数据集,7个混合设计变量,即水/水泥比(W / C),砂/水泥比(S / C),纳米 - 二氧化硅/水泥比(NS / C),微二氧化硅/水泥比(MS / C),年龄和孔隙率。数值结果表明,与多项式,线性和乙状内核相比,RBF内核通常更好地表现更好并提供更准确的结果。如果孔隙率被认为是输入参数,则SVM与RBF核预测在弯曲强度和压缩强度的预测中的均方根误差的值为0.2909(R-2 = 0.9970的相关系数)和1.2969(R-分别为2 = 0.9987)。此外,使用多层的感知(MLP)神经网络,径向基函数(RBF)网络和一般回归神经网络(GRNN)方法来预测水泥砂浆强度。然后将得到的结果与基于RBF核(SVM-RBF)的SVM的结果进行比较。 SVM模型中的比较评估在两种情况下进行:在第一种情况下,在第二种情况下,孔隙率不被视为输入参数,而输入参数中包括的孔隙率。结果表明,当孔隙率被认为是输入参数时,将获得更高的精度和更好的结果。还进行了敏感性分析,以评估输入参数对预测的反应的影响。为了验证所提出的SVM模型,从文献中考虑了86个弯曲数据以及266个压缩数据,然后使用支持向量回归(SVR)核来预测水泥砂浆的弯曲强度和抗压强度。该研究的结果表明,SVM-RBF是一种相对较新的强大,替代的方法,可预测含有纳米和微二氧化硅的水泥砂浆的弯曲强度和抗压强度。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号