...
首页> 外文期刊>Computers & geosciences >Spatially explicit individual-based modeling using a fixed super-individual density
【24h】

Spatially explicit individual-based modeling using a fixed super-individual density

机译:使用固定的超个体密度的基于空间的基于个体的建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Individual-based models (IBMs) of planktonic microorganisms (e.g., bacterioplankton, phytoplankton) have to simulate large numbers of individuals. Because of computational limitations these models rely on simulating a number of super-individuals that are representative of a larger number of individuals. Using a fixed representative number (the number of individuals one super-individual represents) results in a lower computational resolution (number of super-individuals) at times and in areas of low individual densities, which is undesirable when (a) large temporal and/or spatial gradients exist and (b) variability in state variables or behavior at low densities is important. Various methods exist that fix the number of super-individuals in the global model domain by allowing the representative number to vary in time. Those methods solve the problem introduced by large temporal gradients, but do not address spatial gradients. This paper presents an accounting method that maintains an approximately constant super-individual density in time and space. Each spatial model segment has a local super-individual population that is resampled when the number shrinks or grows outside user-specified bounds, or when the variance of the representative numbers exceeds a user-specified threshold. This local method is compared to a global method and evaluated quantitatively against the analytical solution to an instantaneous input (slug release) into a river, and qualitatively in a biogeochemical phytoplankton model applied to a point source nutrient discharge into a river. Computations are performed using the iAlgae individual-based phytoplankton modeling framework. The applications demonstrate that the local method results in a spatially uniform or density-independent relative error, and it is computationally more efficient at controlling relative error at low densities. However, for the same total number of super-individuals, it is computationally more demanding and therefore less efficient at controlling absolute error. The local method is superior to the global method for the biogeochemical model application, because a significant spatial gradient (front) exists and the dynamics at the low densities affects the model behavior downstream.
机译:基于个体的浮游微生物(例如,浮游细菌,浮游植物)模型(IBM)必须模拟大量个体。由于计算限制,这些模型依赖于模拟代表大量个人的大量超个人。使用固定的代表数(一个超个体代表的个体数)会导致在较低的个人密度区域和时间上降低计算分辨率(超个体的数目),这在以下情况下是不希望的:(a)较大的时间和/或存在空间梯度,并且(b)低密度状态变量或行为的可变性很重要。通过允许代表人数随时间变化,存在固定全局模型域中超个人人数的各种方法。这些方法解决了大的时间梯度所带来的问题,但没有解决空间梯度。本文提出了一种在时空上保持近似恒定的超个人密度的会计方法。每个空间模型段都有一个局部超个体种群,当数量在用户指定的范围内缩小或增长时,或者当代表数的方差超过用户指定的阈值时,将对其进行重新采样。将该局部方法与全局方法进行比较,并针对向河流的瞬时输入(段塞释放)的分析解决方案进行定量评估,并在应用于点源养分排放到河流中的生物地球化学浮游植物模型中进行定性分析。使用基于个人的iAlgae浮游植物建模框架进行计算。这些应用表明,局部方法会导致空间上均匀或与密度无关的相对误差,并且在控制低密度下的相对误差方面,计算效率更高。但是,对于相同总数的超个人,它在计算上要求更高,因此控制绝对误差的效率较低。对于生物地球化学模型应用,局部方法优于全局方法,因为存在显着的空间梯度(前部)并且低密度下的动力学影响下游的模型行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号