...
首页> 外文期刊>Computers & Chemical Engineering >Multiscale modeling of a tubular reactor for flow chemistry and continuous manufacturing
【24h】

Multiscale modeling of a tubular reactor for flow chemistry and continuous manufacturing

机译:用于流化学和连续生产的管式反应器的多尺度建模

获取原文
获取原文并翻译 | 示例
           

摘要

Continuous manufacturing of drug substance with the aid of flow chemistry is mostly performed in the tubular reactors and at low flowrates. The laminar flow in the reactor limits micromixing for advancing the reactions and transport phenomena. Reactor scale-up can be performed based on computational simulations and lab scale experimental studies. The residence time distribution and dispersion of the component will be varied at different scales, which require deep understanding of the multiscale phenomena for design, control, and risk analysis.This study is designed to show how modeling can aid the design and risk assessment of flow chemistry process which are often influenced by the Multiphysics of kinetics, heat transfer, and mass transfer. Previous works used experimental methods to study the dispersion and residence time distribution; developed numerical models without considering the Multiphysics and variable fluid properties (i.e. temperature and composition dependent density); or didn't evaluate the scale-up effect and size dependent distribution for reaction in the laminar flow. This study aims to fill the gap and address these issues by developing the first-principle mechanistic modeling.A Fridel-craft acylation reaction for continuous manufacturing of an intermediate for Ibuprofen synthesis is modeled in this study for different sizes of the reactor. Two models were developed for the process step: a semi-distributed lumped model based on space independent approach, and a Finite Element Method (FEM) model based on space dependent approach with variable discrete volumes in radial and axial dimension. A case of model-based scale-up is also studied.The results demonstrate application of mechanistic modeling in evaluating dispersion and residence time distribution in continuous manufacturing of an API. The coupled reaction and Multiphysics modeling evaluated the scale-up limitations, mixing restrictions, and axial dispersions. Published by Elsevier Ltd.
机译:借助流化法连续生产原料药大多在管式反应器中以低流量进行。反应器中的层流限制了微混合,以促进反应和传输现象。可以基于计算模拟和实验室规模的实验研究来进行反应器放大。组件的停留时间分布和分散程度将在不同的尺度上变化,这需要深入了解多尺度现象,以进行设计,控制和风险分析。本研究旨在说明建模如何帮助流程设计和风险评估化学过程,通常受动力学,传热和传质的多物理场影响。以前的工作使用实验方法来研究分散和停留时间的分布。在不考虑多物理场和可变流体特性(即取决于温度和成分的密度)的情况下开发数值模型;或没有评估层流中反应的放大效应和尺寸依赖分布。这项研究旨在通过建立第一性原理机理模型来填补空白并解决这些问题。在该研究中,针对不同尺寸的反应器,对用于连续生产布洛芬合成中间体的Fridel-craft酰化反应进行了建模。为该工艺步骤开发了两个模型:基于空间独立方法的半分布式集总模型,以及基于空间依赖方法的径向和轴向可变离散体积的有限元方法(FEM)模型。研究了一个基于模型的放大案例。结果证明了机械模型在评估API连续制造中的分散性和停留时间分布方面的应用。反应和多物理场耦合模型评估了放大限制,混合限制和轴向扩散。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号