首页> 外文期刊>Computer networks >Learning scheduling bursty requests in Mobile Edge Computing using DeepLoad
【24h】

Learning scheduling bursty requests in Mobile Edge Computing using DeepLoad

机译:使用Deebload学习在移动边缘计算中的突发请求

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The emergence of Mobile Edge Computing (MEC) alleviates the large transmission latency resulting from the traditional cloud computing. For the compute-intensive requests such as video analysis, mobile users prefer to obtain a desired quality of experience (QoE) with neglected latency and reduced energy consumption. The popularity of smart devices allows users to release a run of compute-intensive as well as latency sensitive requests anywhere, which may lead to bursty requests. A single resource-constrained edge server nearby is capable of handling a small amount of requests quickly, yet it seems helpless when encountering bursty compute-intensive requests. Despite the abundance of recently proposed schemes, the majority focus on efficiently scheduling pending requests in a single edge server, and ignored the potential role of edge collaboration to schedule bursty requests. Besides, while some recent studies proposed to finish a task using multiple devices, they focused on collaboration between mobile devices rather than between edge servers. Hence, we propose DeepLoad, a S2S system that schedules the bursty requests with a collaborative method using reinforcement learning (RL). DeepLoad decouples the scheduling decision into AP selection for setting the access point and workload redistribution for collaborative servers. DeepLoad trains a neural network model that picks decisions for each request based on observations collected by mobile devices. DeepLoad learns to make scheduling decisions solely through the resulting performance of historical decisions rather than rely on pre-programmed models or specific assumptions for the environment. Naturally, DeepLoad automatically learns the scheduling algorithm for each request and obtains a gratifying QoE. We aim to maximize the fraction of requests finished before their attached deadlines. Based on the Shanghai taxi trajectory data set, we design a simulator to obtain abundant samples, and leverage two GeForce GTX TITAN Xp GPUs to train the Actor-Critic network. Compared to the state-of-the-art bandwidth-based and server resources-based methods, DeepLoad can achieve a significant improvement in average fraction.
机译:移动边缘计算(MEC)的出现减轻了传统云计算所产生的大传输延迟。对于诸如视频分析的计算密集型请求,移动用户们更倾向于获得所需的经验质量(QoE),忽略延迟和降低能耗。智能设备的普及允许用户在任何地方释放计算密集型以及延迟敏感请求的运行,这可能导致突发请求。附近的单个资源受限的边缘服务器能够快速处理少量请求,但在遇到突发的计算密集型请求时似乎无助。尽管有丰富的近期提出的计划,但大多数人侧重于有效地安排在单个边缘服务器中的待处理请求,并忽略边缘协作以调度突发请求的潜在作用。此外,虽然最近的一些研究建议使用多个设备完成任务,但它们专注于移动设备之间的协作而不是边缘服务器之间的协作。因此,我们提出了一种Deebload,S2S系统将突发请求与使用加强学习(RL)的协作方法调度。 Deebload将调度决策分离为AP选择,以设置协作服务器的接入点和工作负载重新分发。 Deebload列出了一个神经网络模型,基于移动设备收集的观察来选择每个请求的决策。 Deebload学习仅通过产生历史决策的结果,而不是依赖于预先编程的模型或环境的特定假设来进行调度决策。当然,Deebload自动学习每个请求的调度算法,并获得满足QoE。我们的目标是最大限度地提高所截止日期之前完成的请求的一部分。基于上海出租车轨迹数据集,我们设计了一个模拟器,以获得丰富的样品,并利用两个GeForce GTX Titan XP GPU培训演员 - 批评网络。与最先进的基于带宽和基于服务器资源的方法相比,Deebload可以实现平均分数的显着改善。

著录项

  • 来源
    《Computer networks》 |2021年第15期|107655.1-107655.11|共11页
  • 作者单位

    Nanjing Univ State Key Lab Novel Software Technol Nanjing 210023 Peoples R China;

    Nanjing Univ State Key Lab Novel Software Technol Nanjing 210023 Peoples R China;

    Temple Univ Dept Comp & Informat Sci Philadelphia PA 19122 USA;

    Nanjing Univ State Key Lab Novel Software Technol Nanjing 210023 Peoples R China;

    Nanjing Univ State Key Lab Novel Software Technol Nanjing 210023 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bursty requests; Edge collaboration; Deep reinforcement learning;

    机译:爆发请求;边缘协作;深增强学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号