...
首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations
【24h】

GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations

机译:基于GPGPU的用于生物力学的显式有限元计算:材料模型,要素技术和硬件世代的性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Finite element (FE) simulations are increasingly valuable in assessing and improving the performance of biomedical devices and procedures. Due to high computational demands such simulations may become difficult or even infeasible, especially when considering nearly incompressible and anisotropic material models prevalent in analyses of soft tissues. Implementations of GPGPU-based explicit FEs predominantly cover isotropic materials, e.g. the neo-Hookean model. To elucidate the computational expense of anisotropic materials, we implement the Gasser-Ogden-Holzapfel dispersed, fiber-reinforced model and compare solution times against the neo-Hookean model. Implementations of GPGPU-based explicit FEs conventionally rely on single-point (under) integration. To elucidate the expense of full and selective-reduced integration (more reliable) we implement both and compare corresponding solution times against those generated using underintegration. To better understand the advancement of hardware, we compare results generated using representative Nvidia GPGPUs from three recent generations: Fermi (C2075), Kepler (K20c), and Maxwell (GTX980). We explore scaling by solving the same boundary value problem (an extension-inflation test on a segment of human aorta) with progressively larger FE meshes. Our results demonstrate substantial improvements in simulation speeds relative to two benchmark FE codes (up to 300x while maintaining accuracy), and thus open many avenues to novel applications in biomechanics and medicine.
机译:有限元(FE)模拟在评估和改善生物医学设备和程序的性能方面越来越有价值。由于对计算的高要求,这种模拟可能变得困难甚至不可行,尤其是在考虑软组织分析中普遍存在的几乎不可压缩的各向异性材料模型时。基于GPGPU的显式有限元的实现主要涵盖各向同性材料,例如新Hookean模型。为了阐明各向异性材料的计算费用,我们实现了Gasser-Ogden-Holzapfel分散的纤维增强模型,并将求解时间与Neo-Hookean模型进行了比较。基于GPGPU的显式FE的实现通常依赖于单点(底层)集成。为了阐明完全和选择性减少的集成(更可靠)的费用,我们同时实现了这两种方法,并将相应的解决方案时间与使用欠集成生成的解决方案时间进行了比较。为了更好地了解硬件的发展,我们比较了使用最近三代的代表性Nvidia GPGPU生成的结果:费米(C2075),开普勒(K20c)和麦克斯韦(GTX980)。我们通过求解具有越来越大的有限元网格的相同边界值问题(对人主动脉的一部分进行膨胀-膨胀测试)来探索缩放。我们的结果表明,相对于两个基准有限元代码,仿真速度有了实质性的改善(在保持精度的同时,最高可达300倍),因此为生物力学和医学的新应用打开了许多途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号