Abstract Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow
【24h】

Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow

机译:地质材料的相场和塑性耦合模型:从脆性断裂到韧性流

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractThe failure behavior of geological materials depends heavily on confining pressure and strain rate. Under a relatively low confining pressure, these materials tend to fail by brittle, localized fracture, but as the confining pressure increases, they show a growing propensity for ductile, diffuse failure accompanying plastic flow. Furthermore, the rate of deformation often exerts control on the brittleness. Here we develop a theoretical and computational modeling framework that encapsulates this variety of failure modes and their brittle–ductile transition. The framework couples a pressure-sensitive plasticity model with a phase-field approach to fracture which can simulate complex fracture propagation without tracking its geometry. We derive a phase-field formulation for fracture in elastic–plastic materials as a balance law of microforce, in a new way that honors the dissipative nature of the fracturing processes. For physically meaningful and numerically robust incorporation of plasticity into the phase-field model, we introduce several new ideas including the use of phase-field effective stress for plasticity, and the dilative/compactive split and rate-dependent storage of plastic work. We construct a particular class of the framework by employing a Drucker–Prager plasticity model with a compression cap, and demonstrate that the proposed framework can capture brittle fracture, ductile flow, and their transition due to confining pressure and strain rate.
机译: 摘要 地质材料的破坏行为在很大程度上取决于围压和应变率。在相对较低的围压下,这些材料往往会因脆性的局部断裂而失效,但随着围压的增加,它们显示出伴随塑性流动而发生延性,弥散性破坏的趋势。此外,变形率通常控制脆性。在这里,我们开发了一个理论和计算建模框架,其中包含了各种故障模式及其脆性-延性转变。该框架将压敏塑性模型与相场方法耦合到裂缝,该方法可以模拟复杂的裂缝扩展而无需跟踪其几何形状。我们以一种新的方式来推导弹塑性材料中的断裂的相场公式,作为微力的平衡定律,以一种新的方式来表达断裂过程的耗散性。为了将可塑性在物理上有意义且在数值上鲁棒性地纳入相场模型,我们引入了一些新的思想,包括使用相场有效应力来实现可塑性,以及塑性工作的扩张/压缩分裂和速率依赖型存储。我们通过使用带压缩帽的Drucker-Prager可塑性模型构建框架的特定类别,并证明了所提出的框架可以捕获由于限制压力和应变率而引起的脆性断裂,延性流动及其过渡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号