首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A high-precision co-rotational formulation of 3D beam elements for dynamic analysis of flexible multibody systems
【24h】

A high-precision co-rotational formulation of 3D beam elements for dynamic analysis of flexible multibody systems

机译:用于柔性多体系统动力学分析的3D梁单元的高精度同向旋转公式

获取原文
获取原文并翻译 | 示例
           

摘要

Evaluating inertia forces is a central and complicated task for dynamic analysis of flexible multibody systems (FMS) involving large displacements and rotations. In a number of co-rotational approaches, cubic interpolations are adopted to formulate both inertia and internal forces, where the inertia term may be complicated in derivation and several Gauss points are needed in the numerical integration. The paper presents a high-precision co-rotational formulation of 3D beam elements for dynamic analysis of FMS. The method of switching the rotation vector and its complement is adopted to avoid the singularity problem in spatial finite rotations. In contrast to the traditional co-rotational formulation, the governing equations in the paper are formulated based on the principle of virtual power, without requiring the variation of rotation matrix. In the framework of the proposed co-rotational formulation, the stiffness matrix of small-deformation beam element can be used directly, including the Euler-Bernoulli and Timoshenko-Reissner beam elements. More essentially, the inertia terms of the beam element are formulated by discretizing the beam element into three lumped masses at the left and right end nodes, and an auxiliary node at the middle point of the beam element, resulting in a lumped mass matrix. The equivalence ensures that the total mass is completely accurate and the moment of inertia is high-precision if the beam element undergoes small elastic deformation in the local coordinate system. In the local coordinate system of co-rotational formulations, small elastic deformation can be guaranteed so that the inertia forces are formulated analytically without needing the Gauss integration. Finally, four numerical examples are considered to evaluate the accuracy of the formulation against to the geometrically exact beam theory and the previous co-rotational beam formulations. The proposed method can give high-precision numerical results from the comparison, even if using a small number of elements. (C) 2019 Elsevier B.V. All rights reserved.
机译:评估惯性力是对涉及大位移和旋转的柔性多体系统(FMS)进行动态分析的核心且复杂的任务。在许多同向旋转方法中,均采用三次插值法来表示惯性力和内力,其中惯性项的推导可能会很复杂,而数值积分则需要几个高斯点。本文提出了一种用于FMS动态分析的高精度3D梁单元同向旋转公式。为了避免空间有限旋转中的奇异性问题,采用了旋转矢量及其补数的切换方法。与传统的同向旋转公式相反,本文中的控制方程式是根据虚拟动力原理而公式化的,不需要改变旋转矩阵。在所提出的同向旋转公式的框架内,可以直接使用小变形梁单元的刚度矩阵,包括Euler-Bernoulli和Timoshenko-Reissner梁单元。更重要的是,梁单元的惯性项是通过将梁单元离散为左,右端节点的三个集总质量,以及在梁单元的中点处的辅助节点离散化而得到的集总质量矩阵。当梁单元在局部坐标系中经历小的弹性变形时,这种等效性可确保总质量完全准确,并且惯性矩是高精度的。在同向旋转公式的局部坐标系中,可以保证较小的弹性变形,因此无需高斯积分就可以分析得出惯性力。最后,考虑了四个数值示例,以根据几何精确梁理论和先前的同向旋转梁公式来评估公式的准确性。即使使用较少的元素,所提出的方法也可以从比较中获得高精度的数值结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号