首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials
【24h】

A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials

机译:用于多尺度拓扑学习和异质材料加速非线性建模的深层材料网络

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this paper, a new data-driven multiscale material modeling method, which we refer to as deep material network, is developed based on mechanistic homogenization theory of representative volume element (RVE) and advanced machine learning techniques. We propose to use a collection of connected mechanistic building blocks with analytical homogenization solutions to describe complex overall material responses which avoids the loss of essential physics in generic neural network. This concept is demonstrated for 2-dimensional RVE problems and network depth up to 7. Based on linear elastic RVE data from offline direct numerical simulations, the material network can be effectively trained using stochastic gradient descent with backpropagation algorithm, further enhanced by model compression methods. Importantly, the trained network is valid for any local material laws without the need for additional calibration or micromechanics assumption. Its extrapolations to unknown material and loading spaces for a wide range of problems are validated through numerical experiments, including linear elasticity with high contrast of phase properties, nonlinear history-dependent plasticity and finite-strain hyperelasticity under large deformations.By discovering a proper topological representation of RVE with fewer degrees of freedom, this intelligent material model is believed to open new possibilities of high-fidelity efficient concurrent simulations for a large-scale heterogeneous structure. It also provides a mechanistic understanding of structure-property relations across material length scales and enables the development of parameterized microstructural database for material design and manufacturing. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文基于代表体积元(RVE)的机械均质化理论和先进的机器学习技术,开发了一种新的数据驱动的多尺度材料建模方法,称为深度材料网络。我们建议使用带有分析均质解决方案的一组连接的机械构件来描述复杂的整体材料响应,从而避免通用神经网络中基本物理的损失。该概念针对二维RVE问题和网络深度最大为7的情况进行了演示。基于离线直接数值模拟的线性弹性RVE数据,可以使用随机梯度下降和反向传播算法有效地训练材料网络,并通过模型压缩方法进一步增强。重要的是,训练有素的网络对于任何当地的材料法均有效,而无需额外的校准或微力学假设。通过数值实验验证了将其外推到未知材料和载荷空间的能力,这些实验包括具有高相位特性对比的线性弹性,非线性历史依赖塑性和大变形下的有限应变超弹性。由于RVE具有较小的自由度,因此该智能材料模型被认为为大规模异质结构打开了高保真高效并发仿真的新可能性。它还提供了对跨材料长度尺度的结构-特性关系的机械理解,并使得能够开发用于材料设计和制造的参数化微结构数据库。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号