首页> 外文期刊>Composite Structures >Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: An integrated data-driven surrogate approach
【24h】

Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: An integrated data-driven surrogate approach

机译:深长短期记忆神经网络,用于加速异质材料的弹性塑性分析:综合数据驱动的替代方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, an integrated data-driven surrogate approach based on the finite-volume direct averaging micromechanics (FVDAM) and the long short-term memory (LSTM) neural network is explored to predict the elastoplastic response of composite materials. In particular, the FVDAM is first applied to generate the uniaxial and cyclic response of unidirectional composites with various off-axis orientations. Next, a two-layered neural network is trained to associate the applied strains to the corresponding stresses, which is subsequently evaluated using the separate, hold-out testing dataset. The LSTM-estimated stress?strain responses coincide with the FVDAM reference results for all the loading cases. The advantage of the LSTM to naturally capture the history-dependent stress?strain behavior over the fully connected neural network is presented, with the percentage prediction errors of the former approach an order of magnitude lower than the latter. Moreover, the robustness of the LSTM surrogate model is examined by analyzing the training data with white noise. The proposed framework offers a viable alternative for the determination of the history-dependent response of composites directly from data analysis without the need to understand the underlying deformation mechanism in the techniques of homogenization, as well as provides a foundation for efficient multiscale analysis of composite materials and structures.
机译:在这项工作中,基于有限体积直接平均微机械(FVDAM)和长短期存储器(LSTM)神经网络的集成数据驱动的代理方法是探讨了复合材料的弹性塑料响应。特别地,首先应用FVDAM以产生具有各种偏离轴取向的单向复合材料的单轴和循环响应。接下来,训练双层神经网络以将所施加的菌株与相应的应力相关联,随后使用单独的阻止测试数据集进行评估。 LSTM估计的应力?应变反应与所有装载病例的FVDAM参考结果一致。 LSTM自然地捕获历史依赖性应力的优点存在于完全连接的神经网络上的应变行为,以前接近前者的百分比预测误差低于后者的数量级。此外,通过用白噪声分析训练数据来检查LSTM代理模型的鲁棒性。所提出的框架提供了一种可行的替代方案,用于确定复合材料的历史依赖性响应,无需了解均质化技术中的潜在变形机制,并为复合材料的有效多尺度分析提供基础和结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号