首页> 外文期刊>Computer Communications >Dynamic control of functional splits for energy harvesting virtual small cells: A distributed reinforcement learning approach
【24h】

Dynamic control of functional splits for energy harvesting virtual small cells: A distributed reinforcement learning approach

机译:能量收集虚拟小型电池的功能划分的动态控制:一种分布式强化学习方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

To meet the growing mobile data traffic demand, Mobile Network Operators (MNOs) are deploying dense infrastructures of small cells as a solution for capacity enhancement. This densification increases the power consumption of mobile networks, thus impacting the environment. As a result, we have seen a recent trend of powering base stations with ambient energy sources to achieve both environmental sustainability and cost reductions. In addition, flexible functional split in Cloud Radio Access Network (CRAN) is a promising solution to overcome the capacity and latency challenges in the fronthaul. In such architecture, local base stations perform partial baseband processing while the remaining part will take place at the central cloud. As the cells become smaller and deployed in a densified manner, it is evident that baseband processing power consumption has a huge share in the total base station power consumption breakdown.In this paper, we propose a network scenario where the baseband processes of the virtual small cells powered solely by energy harvesters and batteries can be opportunistically executed in a grid-connected edge computing server, co-located at the macro base station site. We state the corresponding energy minimization problem and propose multi-agent Reinforcement Learning (RL) to solve it. Distributed Fuzzy Q-Learning and Q-Learning on-line algorithms are tailored for our purposes. Coordination among the multiple agents is favored by broadcasting system level information to the independent learners. The evaluation of the network performance confirms that favoring coordination among the agents via broadcasting may achieve higher system level gains and cumulative rewards closer to the off-line bounds than solutions that are unaware of system level information. Finally, our analysis permits to evaluate the benefits of continuous state/action representation for the learning algorithms in terms of faster convergence, higher cumulative reward and adaptivity to changing environments.
机译:为了满足不断增长的移动数据流量需求,移动网络运营商(MNO)正在部署小型小区的密集基础架构,作为增强容量的解决方案。这种致密化增加了移动网络的功耗,从而影响了环境。结果,我们看到了使用环境能源为基站供电以实现环境可持续性和降低成本的最新趋势。此外,云无线电接入网络(CRAN)中的灵活功能拆分是一种有前途的解决方案,可以克服前传中的容量和延迟问题。在这样的架构中,本地基站执行部分基带处理,而其余部分将在中央云处进行。随着小区的变小和以密集的方式部署,很明显,基带处理功耗在整个基站功耗细分中占有很大份额。本文提出了一种网络场景,其中虚拟小型基带处理仅由能量收集器和电池供电的电池单元可以在宏基站站点并置的并网边缘计算服务器中进行。我们陈述了相应的能量最小化问题,并提出了多智能体强化学习(RL)解决方案。分布式模糊Q学习和Q学习在线算法是针对我们的目的量身定制的。通过向独立学习者广播系统级信息,有利于多个代理之间的协调。对网络性能的评估证实,与不了解系统级信息的解决方案相比,通过广播支持代理之间的协调可能会实现更高的系统级增益和更接近离线界限的累积奖励。最后,我们的分析允许从更快的收敛,更高的累积奖励和对变化的环境的适应性方面评估学习算法的连续状态/动作表示的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号