首页> 外文期刊>Computational Mechanics >Field panel method with grid stretching technique for solving transonic potential flow around arbitrary airfoils
【24h】

Field panel method with grid stretching technique for solving transonic potential flow around arbitrary airfoils

机译:利用网格拉伸技术的场板方法求解跨翼面的跨音速势流

获取原文
获取原文并翻译 | 示例
       

摘要

The Field Panel Method (FPM) with grid stretching technique, presented in this paper, was developed for solving transonic full potential flow around arbitrary airfoils at incidence. In this method, the total potential values are represented by boundary integrals together with a volume integral. The volume integral domain includes both inside and finite outside of the configuration and can be discretisized in a Cartesian grid which may penetrate into the configuration surface. Thus, we avoid the very difficult task of generating body-fitted grids around complex configurations. The boundary potential values are obtained by implementing a standard panel method (symmetrical singularity model), whereas the field potential values are estimated by solving the full potential equation (using AF3 scheme in a Cartesian grid) with approximate inner and proper outer boundary conditions. Furthermore, the grid stretching technique has been utilized that allows to capture the shock waves in a much better quality. It is also shown that both field grid and panel distribution have to be stretched at the same time. Results for transonic potential flows about NACA0012 and RAE2822 airfoils at different Mach numbers and incidences are obtained and compared with other numerical solutions. Great improvement in shock wave quality was achieved by using the present method.
机译:本文提出的采用网格拉伸技术的场板法(FPM)是为解决入射时任意翼型周围的跨音速全势流而开发的。在这种方法中,总电位值由边界积分和体积积分共同表示。体积积分域包括配置的内部和有限外部,并且可以在笛卡尔网格中离散化,而笛卡尔网格可能会渗透到配置表面中。因此,我们避免了围绕复杂配置生成贴身网格的艰巨任务。边界电势值是通过执行标准面板方法(对称奇异模型)获得的,而场电势值是通过求解具有近似内部和适当外部边界条件的完整电势方程(使用笛卡尔网格中的AF3方案)估算的。此外,已经利用了网格拉伸技术,该技术允许以更好的质量捕获冲击波。还显示了必须同时拉伸场网格和面板分布。获得了在不同马赫数和入射角下,NACA0012和RAE2822翼型跨音速势流的结果,并将其与其他数值解进行了比较。通过使用本发明的方法,冲击波质量得到了很大的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号