首页> 外文期刊>Computational Geosciences >Nonlinear domain decomposition scheme for sequential fully implicit formulation of compositional multiphase flow
【24h】

Nonlinear domain decomposition scheme for sequential fully implicit formulation of compositional multiphase flow

机译:顺序多隐式合成多相流的非线性域分解方案

获取原文
获取原文并翻译 | 示例
       

摘要

New sequential fully implicit (SFI) methods for compositional flow simulation have been recently investigated. These SFI schemes decouple the fully coupled problem into separate pressure and transport problems and have convergence properties comparable with those of the fully implicit (FI) method. The pressure system is a parabolic problem with fixed overall compositions and the transport system is a hyperbolic problem with fixed pressure and total velocity. We discuss some aspects of how to design optimal SFI schemes for compositional flow with general equation-of-states by localizing the computations. The different systems are solved sequentially and the fully implicit solution is recovered by controlling the a posteriori splitting errors due to the choice of decoupling. When the parabolic and the hyperbolic operators are separated, it is possible to design nonlinear domain decomposition schemes taking the advantage of the specific properties of each operator. Usually, for reservoir simulation models, most of the reservoir is converged with SFI methods in one outer iteration. However, in some localized regions with strong coupling between the pressure and the compositions, the SFI algorithms may need several outer iterations. Here, we propose a domain decomposition method based on a predictor-corrector strategy. As a first step, the nonlinear parabolic pressure equation is solved on the whole domain with the Multiscale Restriction-Smooth Basis (MsRSB) method used as a linear domain decomposition solver. In a second step, the compositions system is solved. At the end of this first outer iteration, most of the reservoir is converged. Based on a posteriori splitting errors of the SFI scheme in volume and velocity, we define local regions where additional global outer iterations would be required in the conventional SFI scheme. We then fix Dirichlet boundary conditions for the pressure and the compositions and solve local problems in these non converged regions. After convergence of these smaller nonlinear problems, if the boundary conditions are changed by the updated regions, the global pressure problem is revisited. An additional post-processing of local transport iterations makes sure mass is conserved everywhere. The resulting algorithm converges to the same solution as the FI solver, with all simultaneous updates to composition and pressure in localized regions. We demonstrate the robustness of this nonlinear domain decomposition algorithm across a wide parameter range. Realistic compositional models with gas and water injection are presented and discussed.
机译:最近已经研究了用于组分流动模拟的新的顺序完全隐式(SFI)方法。这些SFI方案将完全耦合的问题解耦为单独的压力和传输问题,并且具有与完全隐式(FI)方法相当的收敛性。压力系统是具有固定整体组成的抛物线问题,运输系统是具有固定压力和总速度的双曲问题。我们讨论了如何通过局部计算来为具有一般状态方程的成分流设计最佳SFI方案的一些方面。依次解决不同的系统,并通过控制由于选择解耦而产生的后验分裂误差来恢复完全隐式的解决方案。当抛物线和双曲线算子分开时,可以利用每个算子的特定属性来设计非线性域分解方案。通常,对于油藏模拟模型,大多数油藏都在一次外部迭代中通过SFI方法收敛。但是,在压力和成分之间具有强耦合的某些局部区域中,SFI算法可能需要几次外部迭代。在这里,我们提出了一种基于预测器-校正器策略的域分解方法。第一步,将非线性抛物线压力方程式作为线性域分解求解器,使用多尺度限制-平滑基础(MsRSB)方法在整个域上求解。在第二步骤中,解决组成系统。在第一次外部迭代结束时,大多数储层都已收敛。基于SFI方案在体积和速度上的后验分裂误差,我们定义了常规SFI方案中需要附加全局外部迭代的局部区域。然后,我们为压力和组成确定Dirichlet边界条件,并解决这些非收敛区域的局部问题。在这些较小的非线性问题收敛之后,如果边界条件被更新的区域更改,则将重新考虑全局压力问题。局部运输迭代的附加后处理可确保在任何地方都保存质量。生成的算法收敛到与FI解算器相同的解,并且同时更新局部区域中的成分和压力。我们证明了该非线性域分解算法在较宽的参数范围内的鲁棒性。提出并讨论了带有注气和注水的实际组成模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号