首页> 外文期刊>Computational Geosciences >Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation
【24h】

Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation

机译:与矿物溶解-沉淀相关的渗透率-孔隙度和曲折度-孔隙度关系的实现和评估

获取原文
获取原文并翻译 | 示例
       

摘要

Changes of porosity, permeability, and tortuosity due to physical and geochemical processes are of vital importance for a variety of hydrogeological systems, including passive treatment facilities for contaminated groundwater, engineered barrier systems (EBS), and host rocks for high-level nuclear waste (HLW) repositories. Due to the nonlinear nature and chemical complexity of the problem, in most cases, it is impossible to verify reactive transport codes analytically, and code intercomparisons are the most suitable method to assess code capabilities and model performance. This paper summarizes model intercomparisons for six hypothetical scenarios with generally increasing geochemical or physical complexity using the reactive transport codes CrunchFlow, HP1, MIN3P, PFlotran, and TOUGHREACT. Benchmark problems include the enhancement of porosity and permeability through mineral dissolution, as well as near complete clogging due to localized mineral precipitation, leading to reduction of permeability and tortuosity. Processes considered in the benchmark simulations are advective-dispersive transport in saturated media, kinetically controlled mineral dissolution-precipitation, and aqueous complexation. Porosity changes are induced by mineral dissolution-precipitation reactions, and the Carman-Kozeny relationship is used to describe changes in permeability as a function of porosity. Archie's law is used to update the tortuosity and the pore diffusion coefficient as a function of porosity. Results demonstrate that, generally, good agreement is reached amongst the computer models despite significant differences in model formulations. Some differences are observed, in particular for the more complex scenarios involving clogging; however, these differences do not affect the interpretation of system behavior and evolution.
机译:物理和地球化学过程导致的孔隙度,渗透率和曲折性变化对于多种水文地质系统至关重要,包括用于受污染的地下水的被动处理设施,工程屏障系统(EBS)以及用于高级核废料的宿主岩( HLW)存储库。由于问题的非线性性质和化学复杂性,在大多数情况下,无法通过分析方式验证反应性运输代码,并且代码比较是评估代码功能和模型性能的最合适方法。本文使用反应性运输代码CrunchFlow,HP1,MIN3P,PFlotran和TOUGHREACT总结了六个假设情景下的模型比较,这些情景通常在地球化学或物理复杂性方面不断增加。基准问题包括通过矿物溶解增加孔隙度和渗透率,以及由于局部矿物沉淀而导致的几乎完全堵塞,从而导致渗透率和曲折度降低。基准模拟中考虑的过程是在饱和介质中的对流-分散输运,动力学控制的矿物溶解-沉淀和水络合。孔隙度的变化是由矿物的溶解-沉淀反应引起的,Carman-Kozeny关系用来描述渗透率随孔隙度的变化。阿奇定律用于更新曲率和孔隙扩散系数作为孔隙率的函数。结果表明,尽管模型制定存在显着差异,但通常在计算机模型之间可以达成良好的一致性。观察到一些差异,特别是在涉及堵塞的更复杂场景中;但是,这些差异不会影响系统行为和演化的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号