首页> 外文期刊>Composites >Viscoelastic damage behavior of fiber reinforced nanoparticle-filled epoxy nanocomposites: Multiscale modeling and experimental validation
【24h】

Viscoelastic damage behavior of fiber reinforced nanoparticle-filled epoxy nanocomposites: Multiscale modeling and experimental validation

机译:纤维增强纳米颗粒填充的环氧纳米复合材料的粘弹性损伤行为:多尺度建模和实验验证

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The development of a physically based constitutive model for glass fiber reinforced boehmite nanoparticle-filled epoxy nanocomposites undergoing finite strain is investigated. The constitutive model allows capturing the main features of the stress-strain relationship of the nanocomposites, including the nonlinear hyperelastic, time-dependent and softening behavior. A methodological framework based on molecular dynamics simulations and experimental tests is proposed to identify the material parameters required for the model. The fiber-matrix interaction is characterized by a composite model, which multiplicatively decomposes the deformation gradient into a uniaxial deformation along the fiber direction and a subsequent shear deformation. The effect of the nanoparticles on the stress-strain response is taken into account through the adoption of a modulus enhancement model. The Eyring model parametrized using molecular simulations is used to describe the rate-dependent viscoelastic deformation under loading. The stress softening behavior is captured by a monotonically increasing function of deformation, so-called softening variable. The results show that the model predictions of stress-strain relationships are in good agreement with experimental data at different fiber and nanoparticle weight fractions. Finally, the constitutive model is implemented in the finite element analysis and examined by means of a benchmark example. Experimental-numerical validation confirms the predictive capability of the present modeling framework, which provides a suitable tool for analyzing fiber reinforced nanoparticle/epoxy nanocomposites.
机译:研究了玻璃纤维增​​强勃姆石纳米颗粒填充的环氧纳米复合材料基于有限应变的基于物理的本构模型的开发。本构模型可以捕获纳米复合材料应力-应变关系的主要特征,包括非线性超弹性,随时间变化和软化行为。提出了一种基于分子动力学模拟和实验测试的方法框架,以识别模型所需的材料参数。纤维-基体相互作用的特征在于复合模型,该模型将变形梯度乘以分解为沿纤维方向的单轴变形和随后的剪切变形。通过采用模量增强模型考虑了纳米颗粒对应力-应变响应的影响。使用分子模拟参数化的Eyring模型用于描述载荷下与速率相关的粘弹性变形。应力软化行为是通过变形的单调递增函数来捕获的,即所谓的软化变量。结果表明,在不同的纤维和纳米颗粒重量分数下,应力-应变关系的模型预测与实验数据吻合良好。最后,本构模型在有限元分析中实现,并通过一个基准示例进行检验。实验数值验证证实了本建模框架的预测能力,该建模框架为分析纤维增强的纳米颗粒/环氧树脂纳米复合材料提供了合适的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号