...
首页> 外文期刊>Composite Structures >Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects
【24h】

Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects

机译:结合了微结构和表面能效应的周期性复合梁结构中弹性波传播的带隙

获取原文
获取原文并翻译 | 示例
           

摘要

A new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli-Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volume fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.
机译:使用非经典的Bernoulli-Euler梁模型,开发了一种确定周期性复合梁结构中弹性波传播的带隙的新模型,该模型结合了微观结构,表面能和旋转惯性效应。在公式中采用了Bloch定理和周期结构的传递矩阵方法。当不考虑微观结构和表面能影响时,新模型简化为基于经典弹性的模型。新模型预测的带隙取决于每种组成材料的微观结构和表面弹性,晶胞尺寸,旋转惯性和体积分数。为了定量说明这些因素的影响,进行了参数研究。数值结果表明,当光束厚度很小时,当前的非经典模型所预测的带隙总是大于经典模型所预测的带隙,但是随着厚度的增加,这种差异逐渐减小。而且,发现根据当前模型和经典模型,用于产生带隙的第一频率和带隙尺寸随着单位晶胞长度的增加而降低。另外,可以看出,当激励频率较高且单位晶胞长度较小时,旋转惯性的影响较大。此外,可以看出,体积分数对带隙尺寸具有显着影响,并且可以通过调整体积分数和材料参数来获得大的带隙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号