...
首页> 外文期刊>IEEE Transactions on Components and Packaging Technologies >Thermal management of BioMEMS: temperature control for ceramic-based PCR and DNA detection devices
【24h】

Thermal management of BioMEMS: temperature control for ceramic-based PCR and DNA detection devices

机译:BioMEMS的热管理:基于陶瓷的PCR和DNA检测设备的温度控制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Integrated microfluidic devices for amplification and detection of biological samples that employ closed-loop temperature monitoring and control have been demonstrated within a multilayer low temperature co-fired ceramics (LTCC) platform. Devices designed within this platform demonstrate a high level of integration including integrated microfluidic channels, thick-film screen-printed Ag-Pd heaters, surface mounted temperature sensors, and air-gaps for thermal isolation. In addition, thermal-fluidic finite element models have been developed using CFDRC ACE+ software which allows for optimization of such parameters as heater input power, fluid flow rate, sensor placement, and air-gap size and placement. Two examples of devices that make use of these concepts are provided. The first is a continuous flow polymerase chain reaction (PCR) device that requires three thermally isolated zones of 94/spl deg/C, 65/spl deg/C, and 72/spl deg/C, and the second is an electronic DNA detection chip which requires hybridization at 35/spl deg/C. Both devices contain integrated heaters and surface mount silicon transistors which function as temperature sensors. Closed loop feedback control is provided by an external PI controller that monitors the temperature dependant I-V relationship of the sensor and adjusts heater power accordingly. Experimental data confirms that better than /spl plusmn/0.5/spl deg/C can be maintained for these devices irrespective of changing ambient conditions. In addition, good matching with model predictions has been achieved, thus providing a powerful design tool for thermal-fluidic microsystems.
机译:在多层低温共烧陶瓷(LTCC)平台中,已经证明了采用闭环温度监测和控制的用于扩增和检测生物样品的集成微流体装置。在该平台内设计的设备展示出高度的集成度,包括集成的微流体通道,厚膜丝网印刷的Ag-Pd加热器,表面安装的温度传感器以及用于热隔离的气隙。此外,已经使用CFDRC ACE +软件开发了热流体有限元模型,该模型可优化加热器输入功率,流体流速,传感器位置以及气隙尺寸和位置等参数。提供了使用这些概念的设备的两个示例。第一个是连续流动聚合酶链反应(PCR)设备,需要三个热隔离区域,分别为94 / spl deg / C,65 / spl deg / C和72 / spl deg / C,第二个是电子DNA检测需要在35 / spl deg / C杂交的芯片。两种器件都包含集成的加热器和用作温度传感器的表面贴装硅晶体管。闭环反馈控制由外部PI控制器提供,该PI控制器监视传感器的温度相关I-V关系并相应地调整加热器功率。实验数据证实,与这些设备无关,无论环境条件如何变化,都可以保持高于/ spl plusmn / 0.5 / spl deg / C的温度。另外,已经实现了与模型预测的良好匹配,从而为热流体微系统提供了强大的设计工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号