...
首页> 外文期刊>Components, Packaging and Manufacturing Technology, IEEE Transactions on >An Integrated Liquid Metal Thermal Switch for Active Thermal Management of Electronics
【24h】

An Integrated Liquid Metal Thermal Switch for Active Thermal Management of Electronics

机译:用于电子设备的主动热管理的集成液态金属热开关

获取原文
获取原文并翻译 | 示例

摘要

Heat dissipation is a key obstacle to achieving reliable, high-power-density electronic systems. Thermal devices capable of actively managing heat transfer are desired to enable heat dissipation optimization and enhanced reliability through device isothermalization. Here, we develop a millimeter-scale liquid metal droplet thermal switch capable of controlling heat transfer spatially and temporally. We demonstrate the thermal switch by integrating it with gallium nitride (GaN) devices mounted on a printed circuit board (PCB) and measure heat transfer and temperature of each device for a variety of switch positions and heat dissipation levels. When integrated with a single GaN device (2.6 mm x 4.6 mm face area) dissipating 1.8 W, the thermal switch shows the ability to actively control heat transfer by conducting 1.3 W in the ON mode with the GaN device at 51 degrees C +/- 1 degrees C, and 0.5 W in the OFF mode with the GaN device at 95 degrees C +/- 1 degrees C. To elucidate the heat transfer physics, we developed a 1-D system thermal resistance model in conjunction with an independent 3-D finite-element method (FEM) simulation, showing excellent agreement with our experimental data. Finally, we demonstrated that when the switch is integrated with two GaN devices, the switch can balance the device heat transfer rate and enhance junction temperature uniformity and system reliability by lowering the device-to-device temperature difference from >10 degrees C (no switch) to 0 degrees C.
机译:散热是实现可靠,高功率密度电子系统的关键障碍。希望能够主动管理传热的热器件,以使散热优化和通过设备等温化的可靠性提高。在这里,我们开发了一种毫米级液态金属液滴热开关,其能够在空间和时间上控制热传递。我们通过将安装在印刷电路板(PCB)上的氮化镓(GaN)器件与氮化镓(GaN)装置集成并测量每个装置的热传递和温度,用于各种开关位置和散热水平来展示热开关。当与单个GAN设备(2.6mm x 4.6 mm面部面积)集成时散消1.8W时,热开关显示通过在51摄氏度+/-中使用GaN设备在ON模式下进行1.3W来主动控制热传递的能力。在95摄氏度下的GaN器件中的OFF模式下为1℃和0.5W,以阐明传热物理学,我们开发了一个1-D系统热阻模型,与独立的3- D有限元方法(FEM)仿真,呈现出与我们的实验数据很好的一致性。最后,我们证明,当开关与两个GAN设备集成时,开关可以通过降低从> 10摄氏度的设备到设备温差来平衡器件传热速率并增强结温均匀性和系统可靠性(没有开关)至0℃。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号