首页> 外文期刊>International journal for numerical methods in biomedical engineering >Numerical simulation of the blood oxygenation level–dependent functional magnetic resonance signal using finite element method
【24h】

Numerical simulation of the blood oxygenation level–dependent functional magnetic resonance signal using finite element method

机译:基于血液氧合水平的功能性磁共振信号的有限元数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Since the introduction of functional magnetic resonance imaging (fMRI), several computational approaches have been developed to examine the effect of the morphology and arrangement of blood vessels on the blood oxygenation-level dependent (BOLD) signal in the brain. In the present work, we implemented the original Ogawa's model using a numerical simulation based on the finite element method (FEM) instead of the analytical models. In literature, there are different works using analytical methods to analyse the transverse relaxation rate (R2*), which BOLD signal is related to, modelling the vascular system with simple and canonical geometries such as an infinite cylinder model (ICM) or a set of cylinders. We applied the numerical simulation to the extravascular BOLD signal as a function of angular vessel distribution (perpendicular vs parallel to the static magnetic field) relevant for anatomical districts characterized by geometrical symmetries, such as spinal cord. Numerical simulations confirmed analytical results for the canonical ICM. Moreover, the perturbation to the magnetic field induced by blood deoxyhaemoglobin, as quantified assuming Brownian diffusion of water molecules around the vessel, revealed that vessels contribute the most to the variation of the R2* when they are preferentially perpendicular to the external magnetic field, regardless of their size. Our results indicate that the numerical simulation method is sensitive to the effects of different vascular geometry. This work highlights the opportunity to extend R2* simulations to realistic models of vasculature based on high-resolution anatomical images.
机译:自从功能磁共振成像(fMRI)引入以来,已经开发了几种计算方法来检查血管的形态和排列对大脑中血氧水平依赖性(BOLD)信号的影响。在当前的工作中,我们使用基于有限元方法(FEM)的数值模拟代替解析模型来实现原始的Ogawa模型。在文献中,有许多使用分析方法分析与BOLD信号有关的横向松弛率(R2 *)的工作,它们具有简单而规范的几何形状,例如无限圆柱模型(ICM)或一组气瓶。我们将数值模拟应用于血管外BOLD信号,作为角度血管分布(垂直与平行于静磁场)的函数,该角度与具有几何对称性(例如脊髓)的解剖区域有关。数值模拟证实了规范ICM的分析结果。此外,血液中的脱氧血红蛋白对磁场的扰动(假设假设水分子在血管周围发生布朗扩散)量化显示,当血管优先垂直于外部磁场时,无论血管如何,R2 *的变化最大。他们的大小。我们的结果表明,数值模拟方法对不同血管几何形状的影响敏感。这项工作强调了将R2 *模拟扩展到基于高分辨率解剖图像的真实脉管系统模型的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号