...
首页> 外文期刊>Communications in numerical methods in engineering >A variational multiscale model for the advection-diffusion-reaction equation
【24h】

A variational multiscale model for the advection-diffusion-reaction equation

机译:对流扩散反应方程的变分多尺度模型

获取原文
获取原文并翻译 | 示例
           

摘要

The variational multiscale (VMS) method sets a general framework for stabilization methods. By splitting the exact solution into coarse (grid) and fine (subgrid) scales, one can obtain a system of two equations for these unknowns. The grid scale equation is solved using the Galerkin method and contains an additional term involving the subgrid scale. At this stage, several options are usually considered to deal with the subgrid scale equation: this includes the choice of the space where the subgrid scale would be defined as well as the simplifications leading to compute the subgrid scale analytically or numerically. The present study proposes to develop a two-scale variational method for the advection-diffusion-reaction equation. On the one hand, a family of weak forms are obtained by integrating by parts a fraction of the advection term. On the other hand, the solution of the subgrid scale equation is found using the following. First, a two-scale variational method is applied to the one-dimensional problem. Then, a series of approximations are assumed to solve the subgrid space equation analytically. This allows to devise expressions for the 'stabilization parameter' z, in the context of VMS (two-scale) method. The proposed method is equivalent to the traditional Green's method used in the literature to solve residual-free bubbles, although it offers another point of view, as the strong form of the subgrid scale equation is solved explicitly. In addition, the authors apply the methodology to high-order elements, namely quadratic and cubic elements. The proposed model consists in assuming that the subgrid scale vanishes also on interior nodes of the element and applying the strategy used for linear element in the segment between these interior nodes. The proposed scheme is compared with existing ones through the solution of a one-dimensional numerical example for linear, quadratic and cubic elements. In addition, the mesh convergence is checked for high-order elements through the solution of an exact solution in two dimensions.
机译:可变多尺度(VMS)方法为稳定化方法设置了通用框架。通过将精确解分为粗糙(网格)和精细(子网格)尺度,可以为这些未知数获得一个由两个方程组成的系统。网格比例方程使用Galerkin方法求解,并且包含涉及子网格比例的附加项。在此阶段,通常考虑几种方法来处理子网格比例方程式:这包括选择将定义子网格比例的空间,以及简化的分析或数值计算方法。本研究提出发展对流扩散反应方程的两尺度变分方法。一方面,通过将对流项的一部分进行积分来获得一类弱形式。另一方面,使用以下方法找到子网格比例方程的解。首先,将二维变分方法应用于一维问题。然后,假定一系列近似值来解析子网格空间方程。这允许在VMS(两尺度)方法的背景下设计“稳定参数” z的表达式。提出的方法与文献中用于解决无残留气泡的传统格林方法等效,尽管它提供了另一种观点,因为明确地解决了子网格比例方程的强形式。此外,作者将该方法应用于高阶元素,即二次和三次元素。提出的模型包括假设子网格比例在元素的内部节点上也消失,并在这些内部节点之间的线段中应用用于线性元素的策略。通过对线性,二次和三次元的一维数值示例的求解,将提出的方案与现有方案进行了比较。另外,通过二维精确解的求解来检查高阶元素的网格收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号