...
首页> 外文期刊>Communications in numerical methods in engineering >Laminar-to-turbulent fluid-nanoparticle dynamics simulations:Model comparisons and nanoparticle-deposition applications
【24h】

Laminar-to-turbulent fluid-nanoparticle dynamics simulations:Model comparisons and nanoparticle-deposition applications

机译:层流到湍流的纳米颗粒动力学模拟:模型比较和纳米颗粒沉积应用

获取原文
获取原文并翻译 | 示例
           

摘要

Relying on benchmark experimental data sets for flow in conduits with local constrictions, LES and three widely used RANS turbulence models, i.e. the low Reynolds number (LRN) k-co model, standard k-co model and shear stress transport (SST) transition model, were compared and evaluated to gain new physical insight and provide useful turbulence modeling information. These two geometric test cases may represent stenosed arteries and a segment of the human upper airways where the velocity fields undergo all flow regimes, i.e. from laminar, via transitional, to fully turbulent. The comparison study revealed that the standard k-co models amplify the flow instabilities after the constrictions, and hence fail to capture the laminar flow behavior at relatively LRNs. The overall performances of LES, the LRN k-co model and SST transition model do not have measurable differences in predicting laminar flows and transition to turbulent flow, while the SST transition model may give a better prediction of turbulence kinetic energy profiles in some cases. Clearly, LES can provide instantaneous velocity fluctuations, which may be significant for turbulent micron particle transport/deposition in the respiratory tract. However, it requires 100-fold more computational time than RANS turbulence models. The use of different turbulence models has a minor effect on nanoparticle deposition in human upper airways when the inspiratory flow rate is low, say, Q = 10L/min. The relative difference for deposition fraction (DF) of nanoparticles with d_p > 10nm is measurable at a medium inhalation flow rate (say, Q = 30 L/min) when employing different turbulence models. However, the absolute difference in DFs is within 0.5% for all-sized nanoparticles (i.e. 1nm≤d_p≤50nm) because the DF in the oral airway is very low (say, < 1.5%) when d_p≥10nm and Q≥10 L/min. The modeling and simulation information provided are most useful for computational fluid-particle dynamics practitioners to obtain accurate lung deposition concentrations of inhaled toxic or therapeutic nanoparticles. The physical insight provided sheds additional light on the laminar-to-turbulent airflow and nanoparticle transport/deposition in locally constricted conduits.
机译:依靠基准实验数据集,对具有局部收缩,LES和三种广泛使用的RANS湍流模型的管道中的流体进行流动,即低雷诺数(LRN)k-co模型,标准k-co模型和切应力传递(SST)过渡模型进行了比较和评估,以获取新的物理见解并提供有用的湍流建模信息。这两个几何测试用例可能代表了狭窄的动脉和人类上呼吸道的一部分,其中速度场经历了所有流动状态,即从层流经过过渡到完全湍流。对比研究表明,标准的k-co模型会放大收缩后的流动不稳定性,因此无法捕获相对LRN处的层流行为。 LES,LRN k-co模型和SST过渡模型的整体性能在预测层流和过渡到湍流方面没有可测量的差异,而在某些情况下,SST过渡模型可以更好地预测湍动能分布。显然,LES可以提供​​瞬时速度波动,这对于呼吸道中微米级湍流微粒的运输/沉积可能很重要。但是,它需要比RANS湍流模型多100倍的计算时间。当吸气流速较低(例如Q = 10L / min)时,使用不同的湍流模型对人上呼吸道中的纳米颗粒沉积影响较小。当采用不同的湍流模型时,在中等吸入流速(例如Q = 30 L / min)下,可以测量d_p> 10nm的纳米颗粒的沉积分数(DF)的相对差异。但是,对于所有尺寸的纳米颗粒(即1nm≤d_p≤50nm),DFs的绝对差在0.5%以内,因为当d_p≥10nm和Q≥10L时,口腔气道中的DF非常低(例如,<1.5%)。 /分钟。所提供的建模和模拟信息对于计算流体粒子动力学的从业人员而言,对于获得吸入的有毒或治疗性纳米颗粒的准确的肺部沉积浓度最为有用。所提供的物理洞察力为层流到湍流的气流以及局部收缩管道中的纳米颗粒运输/沉积提供了更多的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号