...
首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Station-keeping of real Earth-Moon libration point orbits using discrete-time sliding mode control
【24h】

Station-keeping of real Earth-Moon libration point orbits using discrete-time sliding mode control

机译:使用离散滑模控制的真实月球释放点轨道的站位保持

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, station-keeping of real Earth-Moon libration point orbits is studied using discrete-time sliding mode control (DSMC). For comparison, a discrete linear quadratic regulator (DLQR) controller is also considered. The libration orbits are termed "real" in the sense that they are obtained in a complete Solar System model, taking into account all the gravitational forces of the planets, the Moon, and the Sun. This is a key point for any station-keeping study, that the use of far from real orbits as nominal ones increases unnecessarily the station-keeping cost. The resulting controlled system, linearised with respect to some nominal orbit, takes a discrete-time form suitable for applying impulsive maneuvers. The DSMC controller is designed by the reaching law with the parameters chosen in an adaptive way. A method for designing the sliding surface is proposed. In order to assess and compare the performance of the two controllers, simulations are done for six libration point orbits around the L_2 point (three halo orbits and three Lissajous ones) during a time span of 10 years. Several practical constraints are also considered in the simulations. Extensive Monte Carlo results show that the proposed DSMC approach is able to maintain the spacecraft within a close vicinity of the nominal orbits with a maneuver cost less than 2 m/s per year, and it outperforms the DLQR approach in terms of the position controllability. Some comparison with previous results obtained by other authors with different procedures is also given.
机译:在这项工作中,使用离散滑模控制(DSMC)研究了实际的地球-月球释放点轨道的保持。为了进行比较,还考虑了离散线性二次调节器(DLQR)控制器。考虑到行星,月球和太阳的所有引力,它们是在完整的太阳系模型中获得的,因此它们被称为“真实”轨道。这是任何台站研究的关键点,将远离实际轨道的轨道用作名义轨道会不必要地增加台站维护成本。相对于某些公称轨道线性化的最终受控系统采用适合于应用脉冲机动的离散时间形式。 DSMC控制器根据到达定律设计,并以自适应方式选择参数。提出了一种设计滑动面的方法。为了评估和比较两个控制器的性能,在10年的时间里对L_2点周围的六个解放点轨道(三个晕圈和三个李沙育的轨道)进行了仿真。模拟中还考虑了一些实际约束。广泛的蒙特卡洛结果表明,提出的DSMC方法能够将航天器保持在标称轨道的附近,并且每年的机动成本低于2 m / s,并且在位置可控性方面优于DLQR方法。还给出了与其他作者使用不同程序得到的先前结果的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号