首页> 外文期刊>Combustion Science and Technology >PREDICTION AND MEASUREMENT OF THE PRODUCT GAS COMPOSITION OF THE ULTRA RICH PREMIXED COMBUSTION OF NATURAL GAS: EFFECTS OF EQUIVALENCE RATIO, RESIDENCE TIME, PRESSURE,AND OXYGEN CONCENTRATION
【24h】

PREDICTION AND MEASUREMENT OF THE PRODUCT GAS COMPOSITION OF THE ULTRA RICH PREMIXED COMBUSTION OF NATURAL GAS: EFFECTS OF EQUIVALENCE RATIO, RESIDENCE TIME, PRESSURE,AND OXYGEN CONCENTRATION

机译:天然气超富混合燃烧产物气成分的预测和测量:当量比,停留时间,压力和氧气浓度的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The ultra rich combustion (partial oxidation) of natural gas to hydrogen and carbon monoxide is theoretically and experimentally investigated. The effect of the process parameters equivalence ratio, residence time, pressure, and composition of the oxidizer is explored. Computations are performed with the use of the chemical kinetics simulation package CHEMKIN. First, the ultra rich combustion process is modeled as a freely propagating flame in order to establish the rich flame propagation properties. An Arrhenius correlation of the laminar flame speed with the adiabatic flame temperature is found with activation temperature 20,000 K. Subsequently, perfectly stirred reactor (PSR) computations were performed. From these, it is concluded that optimal natural gas conversion to hydrogen and carbon monoxide requires a residence time of at least SO ms and, depending on residence time, an equivalence ratio between 2 and 4. To reach chemical equilibrium in ultra rich mixtures, the residence time is very long (>1000ms). The model predictions are validated by experiments on ultra rich combustion of natural gas by means of air enriched to 40% oxygen concentration at up to .? bar and 300 k W. The effect of equivalence ratio at residence time 50 ms was investigated. Good comparison was found between measurements and model predictions on carbon monoxide, hydrogen, and the soot precursor acetylene. It can be concluded that the model provides reliable information on product gas concentrations as a result of ultra rich combustion of natural gas.
机译:理论上和实验上研究了天然气到氢和一氧化碳的超浓燃烧(部分氧化)。探索了工艺参数当量比,停留时间,压力和氧化剂组成的影响。使用化学动力学模拟软件包CHEMKIN进行计算。首先,将超浓燃烧过程建模为自由传播​​的火焰,以建立浓火焰传播特性。发现层流火焰速度与绝热火焰温度的Arrhenius相关性与活化温度为20,000K。随后,进行了完全搅拌反应器(PSR)的计算。由此得出的结论是,天然气向氢和一氧化碳的最佳转化需要至少SOms的停留时间,并且取决于停留时间的当量比为2至4。要在超富混合气中达到化学平衡,停留时间很长(> 1000ms)。通过在空气中富氧至40%的空气进行超浓燃烧实验,验证了模型预测。 bar和300 kW。研究了停留时间为50 ms时的当量比的影响。发现在一氧化碳,氢气和烟灰前体乙炔的测量值和模型预测之间有很好的比较。可以得出结论,由于天然气的超浓燃烧,该模型提供了有关产物气浓度的可靠信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号