首页> 外文期刊>Combustion and Flame >Modeling and experimental validation of unsteady impinging flames
【24h】

Modeling and experimental validation of unsteady impinging flames

机译:非稳态撞击火焰的建模和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

This study reports on a joint experimental and analytical study of premixed laminar flames impinging onto a plate at controlled temperature, with special emphasis on the study of periodically oscillating flames. Six types of flame structures were found, based on parametric variations of nozzle-to-plate distance (H), jet velocity (U), and equivalence ratio (φ). They were classified as conical, envelope, disc, cool central core, ring, and side-lifted flames. Of these, the disc, cool central core, and envelope flames were found to oscillate periodically, with frequency and sound pressure levels increasing with Re and decreasing with nozzle-to-plate distance. The unsteady behavior of these flames was modeled using the formulation derived by Durox et al. [D. Durox, T. Schuller, S. Candel, Proc. Combust. Inst. 29 (2002) 69-75] for the cool central core flames where the convergent burner acts as a Helmholtz resonator, driven by an external pressure fluctuation dependent on a velocity fluctuation at the burner mouth after a convective time delay τ. Based on this model, the present work shows that τ=(Re[2jtanh~(-1)((2δω+(1+N)jω~2-jω_0~2)/(2δω+(1-N)jω~2-jω_0~2))]+2πK)/ω, i.e., there is a relation between oscillation frequency (ω), burner acoustic characteristics (ω_0, δ), and time delay τ, not explicitly dependent on N, the flame-flow normalized interaction coefficient [D. Durox, T. Schuller, S. Candel, Proc. Combust. Inst. 29 (2002) 69-75], because (partial deriv τ)/ (partial deriv N) = 0. Based on flame motion and noise analysis, K was found to physically represent the integer number of perturbations on flame surface or number of coherent structures on impinging jet. Additionally, assuming that τ = β H/U, where H is the nozzle-to-plate distance and U is the mean jet velocity, it is shown that β_(Disc) = 1.8, β_(CCC) = 1.03, and β_(Env) = 1.0. A physical analysis of the proportionality constant β showed that for the disc flames, τ corresponds to the ratio between H and the velocity of the coherent structures. In the case of envelope and cool central core flames, τ corresponds to the ratio between H and the mean jet velocity. The predicted frequency fits the experimental data, supporting the validity of the mathematical modeling, empirical formulation, and assumptions made.
机译:这项研究报告了在温度受控的情况下撞击到板上的预混合层流火焰的联合实验和分析研究,特别着重于周期性振荡火焰的研究。根据喷嘴到板的距离(H),射流速度(U)和当量比(φ)的参数变化,发现了六种火焰结构。它们分为圆锥形,包络,盘状,中心冷芯,环和侧升火焰。其中,圆盘,冷却的中心芯和包络线火焰周期性地振荡,频率和声压级随Re增加,而随喷嘴到板的距离而减小。这些火焰的不稳定行为是使用Durox等人的公式模拟的。 [D. Durox,T.Schuller,S.Candel,Proc。燃烧研究所[29(2002)69-75]针对冷的中心芯火焰,其中会聚的燃烧器充当亥姆霍兹共振器,由对流时间延迟τ之后取决于燃烧器口处的速度波动的外部压力波动驱动。在此模型的基础上,目前的工作表明τ=(Re [2jtanh〜(-1)((2δω+(1 + N)jω〜2-jω_0〜2)/(2δω+(1-N)jω〜2 -jω_0〜2))] +2πK)/ω,即振荡频率(ω),燃烧器声学特性(ω_0,δ)和时间延迟τ之间存在关系,但并不明显取决于N,即火焰流归一化相互作用系数[D。 Durox,T.Schuller,S.Candel,Proc。燃烧研究所29(2002)69-75],因为(偏导数τ)/(偏导数N)=0。根据火焰运动和噪声分析,发现K物理上表示火焰表面扰动的整数或相干数撞击射流上的结构。另外,假设τ=βH / U,其中H是喷嘴到板的距离,U是平均射流速度,则表明β_(Disc)= 1.8,β_(CCC)= 1.03和β_( Env)= 1.0。比例常数β的物理分析表明,对于圆盘火焰,τ对应于H与相干结​​构速度之间的比率。在包络和中心冷芯火焰的情况下,τ对应于H与平均射流速度之比。预测频率符合实验数据,支持数学建模,经验公式和所做假设的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号