首页> 外文期刊>Combustion and Flame >Transition from cool flame to thermal flame in compression ignition process
【24h】

Transition from cool flame to thermal flame in compression ignition process

机译:在压缩点火过程中从冷焰过渡到热焰

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanism that initiates thermal flames in compression ignition has been studied. Experimentally, a homogeneous charge compression ignition (HCCI) engine was used with DME, n-heptane, and n-decane. Arrhenius plots of the heat release rate in the HCCI experiments showed that rates of heat release with DME, n -heptane, and n-decane exhibited a certain activation energy that is identical to that of the H_2O_2 decomposition reaction. The same feature was observed in diesel engine operation using ordinary diesel fuel with advanced ignition timing to make ignition occur after the end of fuel injection. These experimental results were reproduced in nondimensional simulations using kinetic mechanisms for DME, n-heptane, and n-decane, the last being developed by extending the n-heptane mechanism. Methanol addition, which suppresses low-temperature oxidation (LTO) and delays the ignition timing, had no effect on the activation energy obtained from the Arrhenius plot of heat release rate. Nevertheless, methanol addition lowered the heat release rates during the prethermal flame process. This is because H_2O_2 formation during cool flame was reduced by adding methanol. The mechanism during the transition process from cool flame to thermal flame can be explained quantitatively using thermal explosion theory, in which the rate-determining reaction is H_2O_2 decomposition, assuming that heat release in this period is caused by partial oxidation of DME and HCHO initiated with the reaction with OH produced though H_2O_2 decomposition.
机译:已经研究了在压缩点火中引发热火焰的机理。实验上,均质充量压缩点火(HCCI)发动机与DME,正庚烷和正癸烷一起使用。 HCCI实验中放热速率的Arrhenius图显示,DME,正庚烷和正癸烷的放热速率显示出一定的活化能,该活化能与H_2O_2分解反应的活化能相同。在使用具有提前点火正时的普通柴油的柴油机运行中观察到了相同的特征,以使点火在喷油结束后发生。这些实验结果在DME,正庚烷和正癸烷的动力学机理的无量纲模拟中得以再现,最后一种是通过扩展正庚烷机理而开发的。甲醇的添加抑制了低温氧化(LTO)并延迟了点火时间,对从放热率的阿伦尼乌斯曲线获得的活化能没有影响。然而,添加甲醇降低了预热火焰过程中的放热速率。这是因为通过添加甲醇减少了在冷焰期间H_2O_2的形成。可以使用热爆炸理论定量解释从冷火焰到热火焰的转变过程中的机理,其中速率决定反应是H_2O_2分解,假设这段时间内的放热是由DME和HCHO引发的HCHO部分氧化引起的。 H_2O_2分解产生与OH的反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号