首页> 外文学位 >Partially Premixed Combustion in Counterflow Flame and Dual Fuel Compression Ignition Engine.
【24h】

Partially Premixed Combustion in Counterflow Flame and Dual Fuel Compression Ignition Engine.

机译:逆流火焰和双燃料压缩点火发动机中的部分预混燃烧。

获取原文
获取原文并翻译 | 示例

摘要

The overall objective of this research is to examine strategies for reducing NOx and soot emissions in diesel engine. The thesis has two parts. In the first part, the effect of unsaturation or the presence of a double bond in the fuel molecular structure on NOx and soot formation is investigated. Simulations have been performed for partially premixed flames burning n-heptane and 1-heptene fuels in a counterflow configuration and a constant volume diesel combustion vessel to examine the effect of unsaturation at different level of partial premixing and strain rate. A validated detailed kinetic model with 198 species and 4932 reactions has been used in the counterflow flame simulations. Results indicate that the presence of unsaturated bond leads to increased formation of acetylene and propargyl through beta scission reactions, resulting in higher prompt NO, PAH and soot in 1-heptene flames than in n-heptane flames. Since these results are obtained in laminar flames, the study is extended to examine the effect of double bond in spray flames at diesel engine conditions. 3-D simulations are performed using CFD code (CONVERGE) to examine the structure and emission characteristics of n-heptane and 1-heptene spray flames in a constant-volume combustion vessel. The directed relation graph methodology is used to develop a reduced mechanism (207 species and 4094 reactions) starting from the detailed mechanism (482 species and 19072 reactions). Results indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone (RPZ) near the flame stabilization region and a non-premixed reaction zone (NPZ) further downstream. Most of NOx is formed via thermal NO route in the NPZ, while PAH species are mainly formed in the RPZ. The presence of a double bond results in beta scission reactions, leading to higher temperature and consequently higher NO in 1-heptene flame than that in n-heptane flame. It also leads to a significantly higher PAH species, implying increased soot emission in 1-heptene flame than that in n-heptane flame. Reaction path analysis indicated that this is due to significantly higher amounts of 1,3-butadiene and allene formed from beta scission reactions due to the presence of double bond.;In the second part of this research, a dual-fuel strategy for reducing emissions in a diesel engine has been examined. N-heptane and methane have been used as surrogates for diesel (pilot fuel) and natural gas (main fuel), respectively. The physical and chemical processes of dual-fuel combustion are simulated using CONVERGE and a reduced reaction mechanism (42 species, 168 reactions). The mechanism is validated against the experimental data for ignition and flame speed at engine relevant conditions. In engine simulations, methane is premixed with air during the intake, and then ignited by the n-heptane pilot injection. The heat release for the single-fuel case involves a hybrid combustion mode, characterized by rich premixed combustion and diffusion combustion, whereas for the dual-fuel combustion cases it also involves lean premixed combustion with a propagating flame. In addition, simulations focus on the effect of injection timing and the amount of n-heptane injection on the ignition, combustion and emissions in diesel engine. The minimum amount of n-heptane in terms of fractional energy required to ignite the methane/air mixture is analyzed at medium and high engine load conditions. The optimum injection timing is also determined considering engine thermal efficiency and soot/NO x emissions by sweeping through a range of start of injections (SOI) for each engine load and n-heptane injection quantity. The effects of SOI and the amount of n-heptane on emissions are analyzed. Results indicate high UHC emissions due to unburned methane in the crevice region at medium load, and high CO emissions in the n-heptane spray region at high load. The present results can provide guidelines for the dual-fuel engine development.
机译:这项研究的总体目标是研究减少柴油机中NOx和烟尘排放的策略。论文分为两个部分。在第一部分中,研究了不饱和或燃料分子结构中双键的存在对NOx和烟灰形成的影响。已经对以逆流配置燃烧正庚烷和1-庚烯燃料的部分预混火焰和恒定体积的柴油燃烧容器进行了模拟,以检验在不同水平的部分预混和应变率下的不饱和影响。逆流火焰模拟中使用了经过验证的详细动力学模型,该模型具有198种和4932个反应。结果表明,不饱和键的存在会导致通过β断裂反应增加乙炔和炔丙基的形成,从而导致1-庚烯火焰中的NO,PAH和烟灰比正庚烷火焰中的高。由于这些结果是在层流火焰中获得的,因此该研究扩展到检查柴油发动机工况下喷雾火焰中的双键效应。使用CFD代码(CONVERGE)进行3-D模拟,以检查恒定容积燃烧容器中正庚烷和1-庚烯喷雾火焰的结构和发射特性。从详细的机理(482个物种和19072个反应)开始,使用有向关系图方法论来开发一种简化的机理(207个物种和4094个反应)。结果表明,柴油发动机工况下的燃烧具有双重火焰结构,在火焰稳定区域附近具有丰富的预混合反应区(RPZ),而在下游则具有非预混合反应区(NPZ)。大部分NOx是通过NPZ中的热NO途径形成的,而PAH物种主要是在RPZ中形成的。双键的存在会导致β断裂反应,导致1-庚烯火焰中的温度更高,因此NO含量高于正庚烷火焰中的NO。它还导致PAH种类明显增加,这意味着1-庚烯火焰中的烟灰排放量比正庚烷火焰中的烟灰排放量增加。反应路径分析表明,这是由于存在双键而导致β断裂反应形成的1,3-丁二烯和丙二烯的数量明显增加。;在本研究的第二部分,减少排放的双燃料策略在柴油机中已经过检查。正庚烷和甲烷分别用作柴油(先导燃料)和天然气(主要燃料)的替代物。使用CONVERGE和简化的反应机理(42种,168个反应)模拟了双燃料燃烧的物理和化学过程。根据发动机相关条件下点火和火焰速度的实验数据验证了该机制。在发动机模拟中,甲烷在进气期间与空气预混合,然后通过正庚烷引燃喷射点燃。单燃料箱的放热涉及混合燃烧模式,其特征在于浓预混燃烧和扩散燃烧,而对于双燃料箱,还涉及稀薄的预混燃烧和燃烧火焰。此外,模拟着重于喷射正时和正庚烷喷射量对柴油机点火,燃烧和排放的影响。在中等和高发动机负载条件下分析了点燃庚烷/空气混合物所需的最小分数正庚烷。还通过考虑每种发动机负载的正喷射开始范围(SOI)和正庚烷喷射量,考虑发动机热效率和烟灰/ NOx排放来确定最佳喷射正时。分析了SOI和正庚烷含量对排放的影响。结果表明,在中等负荷下,由于缝隙区域中未燃烧的甲烷而导致高UHC排放,而在高负荷下,在正庚烷喷雾区域中,由于CO排放较高。本研究结果可为双燃料发动机的开发提供指导。

著录项

  • 作者

    Fu, Xiao.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

  • 入库时间 2022-08-17 11:52:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号