首页> 外文期刊>Applied Energy >Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames
【24h】

Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames

机译:在反应性受控的压缩点火条件下,DME /甲烷-空气反应性混合层的点火动力学:冷火焰的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A study of ignition dynamics in a turbulent dimethyl ether (DME)/methane-air mixture under reactivity controlled compression ignition (RCCI) conditions was conducted using direct numerical simulation. Initially, the directly-injected DME and in-cylinder premixed methane-air mixture are partially mixed to form a mixing layer in between. A reduced DME/CH4 oxidization mechanism, consisting of 25 species and 147 reaction steps, is developed and validated. Ignition is found to occur as a two-stage process. Low-temperature autoignition is first initiated in the fuel-rich part of the mixture and then transits to a cool flame, propagating towards the even richer mixture through a balanced reaction-diffusion mechanism. Cool flames not only develop in the mixing layer, but also in the initially stratified DME/methane-air mixture. The formation of high-temperature auto ignition kernels is earlier than that in the homogeneous mixture at the same mixture fraction, which is thought to be accelerated by the cool flame. The expanding flames from high-temperature kernels are connected with the neighboring flames before they engulf the stoichiometric mixture iso-lines. The four branches of typical tetrabranchial flames, i.e. cool flame, fuel-rich premixed flame, diffusion flame, fuel-lean premixed flame coexist in the field. The fuel-lean premixed flame branch finally triggers the premixed methane-air flame. The multi-stage and multi-mode nature of the ignition process highlights the intractable challenge to model the RCCI engine combustion.
机译:使用直接数值模拟对湍流二甲醚(DME)/甲烷-空气混合物中在反应性控制的压缩点火(RCCI)条件下的点火动力学进行了研究。首先,将直接注入的DME和缸内预混合的甲烷-空气混合物部分混合,以在两者之间形成混合层。建立并验证了减少的DME / CH4氧化机理,该机理由25种物质和147个反应步骤组成。发现点火发生为两个阶段的过程。低温自燃首先在混合物的燃料含量高的部分开始,然后过渡到冷火焰,通过平衡的反应扩散机制向更浓的混合物传播。冷却火焰不仅在混合层中形成,而且在最初分层的DME /甲烷-空气混合物中也形成。在相同的混合比例下,高温自燃核的形成要早于均匀混合物中的形成,据认为这是由冷火焰加速的。来自高温籽粒的膨胀火焰在吞没化学计量混合物等值线之前先与相邻的火焰连接。典型的四分支火焰的四个分支,即冷火焰,富燃料的预混合火焰,扩散火焰,贫燃料的预混合火焰在现场共存。贫燃料的预混合火焰分支最终触发了预混合的甲烷-空气火焰。点火过程的多级,多模式性质凸显了对RCCI发动机燃烧建模的棘手挑战。

著录项

  • 来源
    《Applied Energy》 |2019年第1期|343-354|共12页
  • 作者单位

    UCL, Dept Mech Engn, London WC1E 7JE, England|Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

    Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA;

    UCL, Dept Mech Engn, London WC1E 7JE, England;

    UCL, Dept Mech Engn, London WC1E 7JE, England;

    Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA;

    Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ignition; Cool flame; DME; Tetrabranchial flame; RCCI; DNS;

    机译:点火;线圈火焰;DME;四分支火焰;RCCI;DNS;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号