首页> 外文期刊>Combustion and Flame >Analysis of flamelet leading point dynamics in an inhomogeneous flow
【24h】

Analysis of flamelet leading point dynamics in an inhomogeneous flow

机译:非均匀流中小火焰前沿动力学分析

获取原文
获取原文并翻译 | 示例
       

摘要

Several studies have utilized "leading points" concepts to explain the augmentation of burning rates in turbulent flames by flow fluctuations. These ideas have been particularly utilized to explain the strong sensitivity of turbulent burning rates to fuel composition. Leading point concepts suggest that the burning velocity is controlled by the velocity of the points on the flame that propagate farthest out into the reactants-thus, they de-emphasize the classical idea that burning velocity enhancement is due to increases in flame surface area. Rather, within this interpretation, flame area creation is the effect, not the cause, of augmented turbulent burning velocities. However, the theory behind the implementation of leading point concepts in turbulent combustion modeling needs further development and the definition of "leading point" has not been fully clarified. For a certain class of steady shear flows, it is straightforward to demonstrate the leading point concept in an intuitive manner, but the problem becomes more complex when the leading points themselves evolve in time. In this paper, we use the G-equation to describe the flame dynamics and, utilizing results for Hamilton-Jacobi equations from the Aubry-Mather theory, demonstrate both the utility and limitations of leading points interpretations for front propagation, at least for deterministic problems. Specifically, we show how the large-time behavior of the solutions is controlled by discrete points on the flame under certain conditions and is, therefore, independent of the rest of the flow field details-a key hypothesis of leading points theories. However, it is possible to find other conditions where the large time behavior of the flame is not controlled by discrete points on the flame, but rather by the velocity field over its entire surface. Moreover, we also show that even in cases where the burning rate is controlled by discrete points, these points are not necessarily the most forward lying points in the flame front. Finally, we consider the case where the laminar flame speed is a function of flame front curvature and derive exact results for the sensitivity of the front speed to the Markstein length, ℓ, for ℓ> 0. These solutions explicitly illustrate how the reduction of front displacement speed for increasing ℓ can be interpreted in terms of leading points dynamics in some cases.
机译:几项研究利用“前沿”概念来解释湍流火焰中流量波动引起的燃烧速率增加。这些想法已特别用于解释湍流燃烧速率对燃料成分的强烈敏感性。前沿概念表明,燃烧速度受火焰上传播到反应物最远的点的速度控制,因此,它们不再强调燃烧速度提高是由于火焰表面积增加而产生的经典思想。相反,按照这种解释,火焰区域的产生是湍流燃烧速度增加的结果,而不是原因。但是,在湍流燃烧模型中实现前沿概念背后的理论有待进一步发展,“前沿”的定义尚未得到充分阐明。对于某一类的恒定剪切流,以直观的方式演示前沿概念很简单,但是当前沿本身随时间变化时,问题变得更加复杂。在本文中,我们使用G方程来描述火焰动力学,并利用Aubry-Mather理论的Hamilton-Jacobi方程的结果,论证了前沿传播(至少对于确定性问题)的前沿解释的效用和局限性。具体来说,我们展示了解决方案的长时间行为是如何在某些条件下由火焰上的离散点控制的,因此与流场细节的其余部分无关-领先理论的关键假设。但是,有可能找到其他条件,在这种情况下,火焰的长时间行为不是由火焰上的离散点控制,而是由火焰整个表面上的速度场控制。而且,我们还表明,即使在燃烧速度由离散点控制的情况下,这些点也不一定是火焰前缘中最靠前的点。最后,我们考虑层流火焰速度是火焰前曲率的函数的情况,并针对ℓ> 0得出前锋速度对Markstein长度sensitivity的敏感性的精确结果。这些解决方案明确说明了前锋的减小在某些情况下,增加ℓ的位移速度可以用前沿动力学来解释。

著录项

  • 来源
    《Combustion and Flame》 |2014年第5期|1337-1347|共11页
  • 作者单位

    School of Mechanical and Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0340, USA,Ben T. Zinn Aerospace Combustion Laboratory, Georgia Institute of Technology, 635 Strong St NW, Atlanta, GA 30318, USA;

    School of Mechanical and Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0340, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Premixed flames; Turbulent; premixed combustion; Leading points; G-equation;

    机译:预混火焰;湍流预混燃烧领先点;G方程;
  • 入库时间 2022-08-18 00:11:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号