首页> 外文期刊>Combustion and Flame >Fuel pyrolysis in a microflow tube reactor-Measurement and modeling uncertainties of ethane, n-butane, and n-dodecane pyrolysis
【24h】

Fuel pyrolysis in a microflow tube reactor-Measurement and modeling uncertainties of ethane, n-butane, and n-dodecane pyrolysis

机译:微流管反应器中的燃料热解-乙烷,正丁烷和正十二烷热解的测量和模型不确定性

获取原文
获取原文并翻译 | 示例
           

摘要

A scaled down flow reactor consisting of 4 mm ID quartz tubing and rapid mixing of fuel with a pre-heated thermal carrier bath was developed to investigate the pyrolysis of both gaseous and pre-vaporized liquid fuels. Starting from a small mixing volume (less than 0.2 cm(3)), the temperature of the hot section (37 cm long) was controlled within +/- 5 K. All species concentrations were measured at the exit plane of the reactor using a GC system while residence time variations were explored by varying the bulk flow velocity. For the atmospheric pressure cases reported here, the temperature and flow residence times explored were in the kinetically controlled regime and ranged from 1000 to 1100 K and 10-90 ms, respectively. The thermal pyrolysis of fuels investigated included ethane, n-butane, and n-dodecane, all diluted in a nitrogen carrier bath of 98% or higher (to minimize temperature departure from the target value). Because the ratio of the mixing volume compared to the kinetically controlled reactor volume is about 2.5%, the associated finite mixing time is shown to have a negligible effect on the temporal evolution of key Co-C-4 species. As a consequence, no species profiles shifting (zero-time shifting) was required in comparisons with model predictions. Experimental and modeling uncertainty analysis are presented to determine whether the experimental data can be used in future efforts aimed at minimization of chemical kinetic model parameter uncertainties. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:开发了一种由4 mm内径石英管组成的按比例缩小流量的反应器,将燃料与预热的热载液快速混合,以研究气态和预汽化液态燃料的热解。从较小的混合体积(小于0.2 cm(3))开始,将热段(37 cm长)的温度控制在+/- 5 K之内。使用通过改变整体流速探索GC系统的停留时间变化。对于此处报道的大气压情况,探索的温度和流动停留时间处于动力学控制范围内,分别为1000至1100 K和10-90 ms。所研究燃料的热解包括乙烷,正丁烷和正十二烷,它们全部在98%或更高的氮气载浴中稀释(以使温度偏离目标值最小)。由于混合体积与动力学控制的反应器体积之比约为2.5%,因此相关的有限混合时间对关键Co-C-4物种的时间演化影响可忽略不计。结果,与模型预测相比,不需要物种分布的偏移(零时偏移)。提出了实验和模型不确定性分析,以确定实验数据是否可用于未来旨在最小化化学动力学模型参数不确定性的工作中。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号