首页> 外文期刊>Combustion and Flame >Elucidating the flame chemistry of monoglyme via experimental and modeling approaches
【24h】

Elucidating the flame chemistry of monoglyme via experimental and modeling approaches

机译:通过实验和建模方法阐明单体型的火焰化学

获取原文
获取原文并翻译 | 示例
       

摘要

This study is concerning the flame chemistry of monoglyme (CH3OCH2CH2OCH3), an oxygenated compound recognized as a clean diesel additive and an ignition improver. Speciation diagnosis was performed for two low-pressure premixed flames fueled by monoglyme with different equivalence ratios (phi=1.0 and 1.5) using the technique of photoionization molecular-beam mass spectrometry (PI-MBMS). Dozens of flame intermediates including some reactive species were quantitatively probed from the monoglyme flames. A kinetic model was proposed for the first time for the combustion of this fuel and validated against the flame structure measurements. By combining experimental observations and modeling interpretations, it has been revealed that under flame conditions, the fuel consumption is dominated by hydrogen abstractions from the central (-CH2CH2-) moiety of monoglyme. Subsequent beta-scissions of the resulting fuel radical lead to the formation of fuel-specific intermediates, methyl vinyl ether and methoxy acetaldehyde. The species pool detected in monoglyme flames differs much from that of dimethyl ether (DME, CH3OCH3) flames, though a monoglyme molecule is symmetrically composed of two DME fuel radicals. This could be attributed to the presence of the central carbon-to-carbon (C-C) bond in monoglyme. Further modeling analyses suggest that the C-C contents together with the stoichiometry of fuel mixtures can impact the concentrations of benzene precursors under premixed flame conditions. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:这项研究涉及一甘醇二甲醚(CH3OCH2CH2OCH3)的火焰化学,这是一种公认​​的清洁柴油添加剂和点火改进剂的含氧化合物。使用光电离分子束质谱技术(PI-MBMS),对两种当量比(phi = 1.0和1.5)不同的单糖精燃料燃烧的低压预混火焰进行了形态诊断。从单体糖单体火焰中定量探查了数十种火焰中间体,其中包括一些反应物种。首次提出了用于燃烧这种燃料的动力学模型,并针对火焰结构测量进行了验证。通过结合实验观察结果和模型解释,已揭示出在火焰条件下,燃料消耗主要由从单糖精的中心(-CH2CH2-)部分抽取的氢决定。随后产生的燃料自由基的β-断裂导致形成燃料特异性中间体,甲基乙烯基醚和甲氧基乙醛。尽管一元单体分子对称地由两个DME燃料自由基组成,但在一元单体火焰中检测到的物种库与二甲醚(DME,CH3OCH3)火焰中的物种库有很大不同。这可能归因于单糖精中中央碳-碳(C-C)键的存在。进一步的模型分析表明,C-C含量与燃料混合物的化学计量一起会影响预混火焰条件下苯前体的浓度。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2018年第5期|298-308|共11页
  • 作者单位

    Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China;

    Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China;

    Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China;

    Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China;

    Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China;

    Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Monoglyme; Premixed flame; Mass spectrometry; Kinetic modeling; Oxygenated fuels;

    机译:单体;预混火焰;质谱;运动学建模;含氧燃料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号