首页> 外文期刊>Combustion and Flame >Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole
【24h】

Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole

机译:生物燃料替代化合物的实验和模型研究:层流燃烧速度和苯甲醚的射流搅拌反应器测量

获取原文
获取原文并翻译 | 示例
           

摘要

Lignocellulosic biomass is a promising alternative fuel source which can promote energy security, reduce greenhouse gas emissions, and minimize fuel consumption when paired with advanced combustion strategies. Pyrolysis is used to convert lignocellulosic biomass into a complex mixture of phenolic-rich species that can be used in a transportation fuel. Anisole (or methoxybenzene) can be used as a surrogate to represent these phenolic-rich species. Anisole also has attractive properties as a fuel component for use in advanced spark-ignition engines because of its high blending research octane number of 120. Presented in the current work are new measurements of laminar burning velocities, jet-stirred reactor (JSR) speciation of anisole/O-2/N-2 mixtures, and the development and validation of a detailed chemical kinetic mechanism for anisole. Homogeneous, steady state, fixed gas temperature, perfectly stirred reactor CHEMKIN simulations were used to validate the mechanism against the current JSR measurements and published JSR experiments from CNRS-Nancy. Pyrolysis and oxidation simulations were based on the experimental reactant compositions and thermodynamic state conditions including P = 1 bar and T=675-1275 K. The oxidation compositions studied in this work span fuel-lean (phi = 0.5), stoichiometric, and fuel rich (phi = 2.0) equivalence ratios. Laminar burning velocities were measured on a heat flux stabilized burner at an unburnt T = 358 K, P = 1 bar and simulated using the CHEMKIN premixed laminar flame speed module. Ignition delay times of anisole were then simulated at conditions relevant to advanced combustion strategies. Current laminar burning velocity measurements and predicted ignition delay times were compared to gasoline components (e.g., n-heptane, iso-octane, and toluene) and gasoline surrogates to highlight differences and similarities in behavior. Reaction path analysis and sensitivity analysis were used to explain the pathways relevant to the current studies. Under pyrolysis and oxidative conditions, unimolecular decomposition of anisole to phenoxy radicals and methyl radicals was found to be important due to the relatively low bond strength between the oxygen and methyl group, similar to 65 kcal/mol. Reactions of these abundant phenoxy radicals with O-2 were found to be critical to accurately reproduce anisole's reactivity. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:木质纤维素生物质是一种有前途的替代燃料来源,与先进的燃烧策略配合使用,可以提高能源安全性,减少温室气体排放并将燃料消耗降至最低。热解用于将木质纤维素生物质转化为富含酚类物质的复杂混合物,该混合物可用于运输燃料。茴香醚(或甲氧基苯)可以用作代表这些富含酚的物质的替代物。由于其高混合研究辛烷值为120,茴香醚还具有作为高级火花点火发动机中使用的燃料组分的诱人特性。目前的工作是对层流燃烧速度,射流搅拌反应堆(JSR)形态进行新的测量。苯甲醚/ O-2 / N-2混合物,以及苯甲醚的详细化学动力学机理的开发和验证。使用均质,稳态,固定气体温度,完美搅拌的反应器进行了CHEMKIN模拟,以验证该机理与目前的JSR测量以及CNRS-Nancy发表的JSR实验相符。热解和氧化模拟基于实验的反应物组成和热力学状态条件,包括P = 1 bar和T = 675-1275K。在这项工作中研究的氧化组成涉及燃料稀薄(phi = 0.5),化学计量和燃料丰富(phi = 2.0)当量比。在未燃烧的T = 358 K,P = 1 bar的情况下,在热通量稳定的燃烧器上测量层流燃烧速度,并使用CHEMKIN预混层流火焰速度模块进行模拟。然后在与高级燃烧策略相关的条件下模拟了苯甲醚的点火延迟时间。将当前的层流燃烧速度测量结果和预测的点火延迟时间与汽油组分(例如正庚烷,异辛烷和甲苯)和汽油替代物进行了比较,以突出表现上的差异和相似之处。反应路径分析和敏感性分析用于解释与当前研究相关的路径。在热解和氧化条件下,由于氧和甲基之间的键合强度相对较低,类似于65 kcal / mol,苯甲醚单分子分解为苯氧基和甲基非常重要。已发现这些丰富的苯氧基与O-2的反应对于准确再现苯甲醚的反应性至关重要。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号