首页> 外文期刊>Combustion and Flame >Pressure gradient tailoring effects on the mechanisms of bluff-body flame extinction
【24h】

Pressure gradient tailoring effects on the mechanisms of bluff-body flame extinction

机译:压力梯度裁缝对诈唬体阻火机制的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The mechanisms of flame blowout under pressure gradient effects are explored for a bluff-body stabilized flame. The blowout process is induced through equivalence ratio reduction from a lean stabilized flame to complete blowout. Simultaneous high-speed particle image velocimetry (PIV) and C-2*/CH* chemiluminescence imaging diagnostics are used to obtain the instantaneous flame structure, vorticity field, equivalence ratio, and local strain rate during the extinction process. The goal is to elucidate the effect of flame-generated vorticity on lean flame extinction. Three test-sections configured as a nozzle, a rectangular duct, and a diffuser, are used to alter the downstream pressure gradient yielding high, nominal, and low magnitudes of flame-generated baroclinic torque. For all three configurations, the flame brush narrows and the shear layer vorticity expands in the transverse direction resulting in flame-shear interactions and extinction. The flame-shear layer interaction increases the strain rate along the flame; however, the strong flame-generated vorticity for the nozzle case delayed the strain rate increase by keeping the flame away from the shear layer the longest. The sharp increase in the Karlovitz number above unity caused by the sudden increase in the strain rate corresponds to the time of flame brush contraction and shear layer width expansion. It is shown that the downstream pressure gradient can either augment or attenuate the time required for the Karlovitz number to reach a critical value of unity, which is associated with local extinctions along the flame. In all of the test-section configurations, the flame-generated vorticity has a weak influence on the Benard von Karman (BVK) instability mode and its harmonics. The Strouhal number during blow-out remained relatively constant in all of the cases showing greater sensitivity to the shear layer length than to the BVK frequency. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:探索了压力梯度效应下的火焰吹出机制,用于凹槽体稳定的火焰。通过从贫稳定的火焰的等效比降低来诱导井喷过程以完成井喷。同时高速粒子图像速度(PIV)和C-2 * / CH *化学发光成像诊断用于在消光过程中获得瞬时火焰结构,涡度场,等效比和局部应变率。目标是阐明火焰产生的涡度对瘦火焰灭绝的影响。配置为喷嘴的三个测试部分,矩形管道和漫射器,用于改变下游压力梯度,从而产生高,标称和低势的火焰产生的倒核扭矩。对于所有三种配置,火焰刷缩小并且剪切层涡度在横向上膨胀,导致火焰剪切相互作用和灭绝。火焰剪切层相互作用沿着火焰增加了应变速率;然而,通过使火焰远离剪切层最长的火焰,喷嘴壳体的强烈火焰产生的涡流延迟了应变速率。由应变速率突然增加引起的Karlovitz数量高于统一的急剧增加对应于火焰刷收缩和剪切层宽度膨胀的时间。结果表明,下游压力梯度可以增强或衰减卡尔沃茨号码所需的时间,以达到统一的临界值,这与沿着火焰的局部灭绝相关联。在所有测试部分配置中,火焰生成的涡度对Benard Von Karman(BVK)不稳定模式及其谐波产生薄弱的影响。在所有情况下,吹出吹出期间的Strouhal数仍然是相对恒定的,表明对剪切层的长度比BVK频率更大的敏感性。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

  • 来源
    《Combustion and Flame》 |2020年第5期|224-237|共14页
  • 作者单位

    Univ Cent Florida Ctr Adv Turbomachinery & Energy Res Dept Mech & Aerosp Engn Orlando FL 32816 USA;

    Univ Cent Florida Ctr Adv Turbomachinery & Energy Res Dept Mech & Aerosp Engn Orlando FL 32816 USA;

    Univ Cent Florida Ctr Adv Turbomachinery & Energy Res Dept Mech & Aerosp Engn Orlando FL 32816 USA;

    Deutsch Zentrum Luft & Raumfahrt DLR German Aerosp Ctr Inst Verbrennungstech Inst Combust Technol Stuttgart Germany;

    Univ Cent Florida Ctr Adv Turbomachinery & Energy Res Dept Mech & Aerosp Engn Orlando FL 32816 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bluff-body flame blowout; Strain rate; Turbulent premixed combustion; Vorticity mechanisms;

    机译:诈唬体火焰井喷;应变率;湍流预混燃烧;涡旋机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号