首页> 外文期刊>Combustion and Flame >An insight into gas phase flame retardant mechanisms of AHP versus AlPi in PBT: Online pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry
【24h】

An insight into gas phase flame retardant mechanisms of AHP versus AlPi in PBT: Online pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry

机译:深入探讨PBT中AHP与AlPi的气相阻燃机理:在线热解真空紫外光电离飞行时间质谱

获取原文
获取原文并翻译 | 示例
           

摘要

As is well known, gas phase flame retardant mechanisms are very hard to be understood for the extremely intricate burning process but they are crucial for developing highly efficient flame retardants. Pyrolysis provides a valid way for this purpose because combustion proceeds after it. In this work, the pyrolysis behaviors of aluminum hypophosphite (AHP), aluminum diethylphosphinate (AIPi), poly(1,4-butylene terephthalate) (PBT) and PBT composites (with 10 wt% AHP or AIPi) were investigated by the fragment-free pyrolysis vacuum ultraviolet photoionization time of flight mass spectrometry (PY-PI-TOFMS) at different temperatures in real time. The gas phase flame retardant mechanism of AHP in PBT is proposed to be the flame inhibition effect of PH3, H3PO2 and P-4 pyrolyzed from AHP. That of AIPi in PBT is speculated to be phosphorus-containing compounds and a kind of phosphorus radical pyrolyzed from AIPi as flame inhibitors and the promoted pyrolysis of AIPi by PBT matrix to be synchronous with it. The eight-membered cyclic non-covalent adduct of C2H5-(O=)P center dot-OH radical and a molecule of diethylphosphinic acid via intermolecular double hydrogen-bond interaction can produce PO type radicals more effectively in flame. Thermogravimetric analysis results are in accordance with those of pyrolysis. And the much better gas phase flame retardant effect of AIPi than AHP in PBT concluded from combustion tests are interpreted by pyrolysis results, which provides powerful guidance for developing highly efficient flame retardants. (C) 2019 Published by Elsevier Inc. on behalf of The Combustion Institute.
机译:众所周知,对于非常复杂的燃烧过程,很难理解气相阻燃剂的机理,但是它们对于开发高效阻燃剂至关重要。热解为此提供了一种有效的方法,因为燃烧在此之后进行。在这项工作中,通过以下片段研究了次磷酸铝(AHP),二乙基次膦酸铝(AIPi),聚(1,4-丁烯对苯二甲酸丁二酯)(PBT)和PBT复合材料(含10 wt%AHP或AIPi)的热解行为-实时在不同温度下进行自由热解真空紫外光电离飞行时间质谱(PY-PI-TOFMS)。提出AHP在PBT中的气相阻燃机理是AHP热解PH3,H3PO2和P-4的阻燃作用。推测PBT中的AIPi是含磷化合物,是一种由AIPi热解的磷自由基,作为阻燃剂,并通过PBT基质促进了AIPi的热解并与其同步。 C 2 H 5-(O =)P中心点-OH基团的八元环状非共价加合物和分子间双氢键相互作用的二乙基次膦酸分子可在火焰中更有效地产生PO型基团。热重分析结果与热解结果一致。燃烧试验得出的结论是,AIPi在PBT中比AHP的气相阻燃效果更好,这可以通过热解结果来解释,这为开发高效阻燃剂提供了有力的指导。 (C)2019由Elsevier Inc.代表燃烧研究所出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号