首页> 外文期刊>Combustion and Flame >LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry
【24h】

LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry

机译:具有多组分汽化模型和详细化学原理的旋流稳定煤油喷雾火焰的LES

获取原文
获取原文并翻译 | 示例
       

摘要

Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solver in the context of Eulerian-Lagrangian LES. By means of the computational platform, a lab-scale, swirl-stabilized spray flame is computed. The burner exhibits some of the key features of current aero-engine combustors. Global features like the measured spray distribution and the position of the reaction zone are well reproduced by the LES. The comparison of droplet size, droplet velocity and liquid volume flux profiles with experimental data also show a good agreement. However, discrepancies in the temperature profiles in the central mixing zone exist. The computational results show that evaporation and mixing are the rate controlling steps in the flame zone. In this zone, chemistry can be assumed to be infinitely fast. However, other zones exist where finite rate chemistry effects prevail. For these states, the direct computation of the elementary reactions by means of Arrhenius equations and the transport of all individual species are beneficial. Furthermore, the finite rate chemistry approach demonstrates a great potential with respect to pollutant formation, as precursors can be directly computed. Additionally, the example of benzene forming from one specific chemical class in the fuel suggests that a multi-component description of the liquid phase and the evaporation process is required to correctly predict soot emissions. (C) 2019 Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR). Published by Elsevier Inc. on behalf of The Combustion Institute.
机译:由于引入了替代航空燃料,因此必须有能够根据燃料成分预测燃烧器性能的新方法和模型。为了实现这一目标,在欧拉-拉格朗日LES的背景下,将多组分汽化模型与直接,详细的化学求解器耦合。借助计算平台,可以计算出实验室规模,旋流稳定的喷雾火焰。该燃烧器具有当前航空发动机燃烧器的一些关键特性。 LES很好地再现了测量的喷雾分布和反应区位置等全局特征。液滴尺寸,液滴速度和液体体积通量曲线与实验数据的比较也显示出良好的一致性。但是,中央混合区的温度分布存在差异。计算结果表明,蒸发和混合是火焰区域的速率控制步骤。在这个区域中,化学反应可以认为是无限快的。但是,存在其他区域,其中存在有限速率的化学作用。对于这些状态,借助Arrhenius方程直接计算基本反应以及所有单个物质的迁移都是有益的。此外,由于可以直接计算前体,因此有限速率化学方法显示出在污染物形成方面的巨大潜力。另外,从燃料中的一种特定化学类别形成苯的示例表明,需要对液相和蒸发过程进行多组分描述才能正确预测烟灰排放。 (C)2019德国Zentrum Fur Luft- und Raumfahrt e.V. (DLR)。由Elsevier Inc.代表燃烧研究所出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号