首页> 外文期刊>Combustion and Flame >Coupled interactions of a helical precessing vortex core and the central recirculation bubble in a swirl flame at elevated power density
【24h】

Coupled interactions of a helical precessing vortex core and the central recirculation bubble in a swirl flame at elevated power density

机译:螺旋进动涡旋核与涡旋火焰中中央再循环气泡在功率密度提高时的相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

The PRECCINSTA GTMC was studied at elevated pressure and power density with 6 kHz stereoscopic particle image velocimetry (SPIV), OH* chemiluminescence (CL), and 100 kHz dynamic pressure measurements. This technically premixed, swirl stabilized flame exhibited self-excited thermoacoustic oscillations with limit-cycle behavior. A helical precessing vortex core (PVC) was detected within the inner shear layer, between the central recirculation bubble (CRB) and the reactant jets. The PVC was found to be the delineating flow feature for combustion dynamics even at elevated pressure. Sparse dynamic mode decomposition (DMD) of the velocity fields deconvolved the dynamics into a thermoacoustic and PVC mode. The precession of the PVC was at a non-harmonic frequency to the thermoacoustic oscillations, and at least twice that of findings at atmospheric conditions. Nevertheless, the continuous and persistent structure of the PVC allows it promote unsteady heat release to sustain the thermoacoustic cycle. The three dimensional structure of the reactant jets, central recirculation bubble, and PVC was reconstructed by double phase conditioning the reconstructed velocity field. The surface of the CRB was observed to transition between asymmetric and symmetric states depending on the thermoacoustic phase. Analysis of the swirling strength values on the CRB surface indicates the interaction strength between the hydrodynamic structures of the PVC and CRB. When this coupling is large, the heat release determined by the mean OH*-CL intensity is maximum. These findings indicate a critical role of the PVC and CRB interaction on combustion in unstable swirl flames at conditions closer to those found in a modern gas turbine engine. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:PRECCINSTA GTMC在升高的压力和功率密度下通过6 kHz立体粒子图像测速仪(SPIV),OH *化学发光(CL)和100 kHz动态压力测量进行了研究。这种经过技术预混合,稳定涡旋的火焰表现出具有极限循环行为的自激热声振荡。在内部剪切层中的中央再循环气泡(CRB)和反应物射流之间检测到螺旋旋进旋涡核心(PVC)。发现即使在升高的压力下,PVC仍是燃烧动力学的重要流动特征。速度场的稀疏动态模式分解(DMD)将动力学分解为热声和PVC模式。 PVC的进动与热声振荡呈非谐波频率,至少是大气条件下的两倍。然而,PVC的连续而持久的结构允许它促进不稳定的热量释放,从而维持热声循环。反应物射流,中央再循环气泡和PVC的三维结构通过双相调节重建的速度场进行重建。观察到CRB的表面根据热声相在不对称状态和对称状态之间转变。对CRB表面上的回旋强度值的分析表明,PVC和CRB的流体力学结构之间的相互作用强度。当此耦合较大时,由平均OH * -CL强度确定的放热最大。这些发现表明,PVC和CRB相互作用在不稳定旋流火焰中的燃烧过程中起着至关重要的作用,条件类似于现代燃气轮机发动机。 (C)2019燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2019年第4期|119-131|共13页
  • 作者单位

    Purdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47907 USA;

    Inst Combust Technol, German Aerosp Ctr DLR, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany;

    Inst Combust Technol, German Aerosp Ctr DLR, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany;

    Purdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47907 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Combustion dynamics; Turbulent swirl flame; High pressure; Gas turbine; Laser diagnostics;

    机译:燃烧动力学;涡旋火焰;高压;燃气轮机;激光诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号