首页> 外文期刊>Combustion and Flame >Flame propagation in nano-aluminum-water (nAl-H_2O) mixtures: The role of thermal interface resistance
【24h】

Flame propagation in nano-aluminum-water (nAl-H_2O) mixtures: The role of thermal interface resistance

机译:火焰在纳米铝水(nAl-H_2O)混合物中的传播:热界面阻力的作用

获取原文
获取原文并翻译 | 示例
       

摘要

A detailed numerical analysis of flame propagation in nano-aluminum-water (nAl-H20) mixture is performed. Emphasis is placed on investigating the role of particle thermal conductivity in the prediction of the burning properties of the mixture. Flame structure and burning characteristics are obtained by solving the energy equation using finite difference discretization and the Gauss-Seidel iteration method. Particle thermal conductivity is modeled using the temperature-dependent thermal conductivities of the aluminum core and oxide layer, as well as their interface resistance. The effective thermal conductivity of the mixture is modeled as a function of temperature, spatial coordinate, and local mixture composition, by means of the unified Maxwell-Eucken-Bruggeman model, accounting for random particle distribution and inter-particle interaction. Results indicate that the combined thermal resistance offered by the oxide layer and the interface constitute 95% of the total resistance of the particle. The calculated particle-size dependent linear burning rates show good agreement with experimental data, with only 5% error. Error in burning rate prediction increases, however, to 20% when interface resistance is excluded from the particle thermal conductivity model. It was also observed that burning rate varies as the inverse of particle size. Finally, an analysis of the sensitivity of burning rate to the individual components of the particle thermal conductivity model is also performed. Results suggest a 30% decrease in burning rate for two orders of magnitude reduction in both interface conductance and oxide thermal conductivity. The burning rate drops by only 15%, however, for a similar reduction in aluminum thermal conductivity. A heat conduction perspective on flame propagation in nanocomposites is presented, identifying the highest and the.lowest, conductive pathways for energy transport. (C) 2018 Published by Elsevier Inc. on behalf of The Combustion Institute.
机译:对火焰在纳米铝水(nAl-H20)混合物中的传播进行了详细的数值分析。重点放在研究颗粒热导率在预测混合物燃烧特性中的作用。通过使用有限差分离散化和高斯-赛德尔迭代法求解能量方程,可以获得火焰结构和燃烧特性。使用铝芯和氧化物层随温度变化的热导率及其界面电阻对颗粒的热导率进行建模。利用统一的Maxwell-Eucken-Bruggeman模型,将混合物的有效导热系数建模为温度,空间坐标和局部混合物组成的函数,并考虑了随机颗粒分布和颗粒间相互作用。结果表明,由氧化物层和界面提供的组合热阻占颗粒总电阻的95%。计算得出的与粒度有关的线性燃烧速率与实验数据显示出良好的一致性,误差仅为5%。但是,当从颗粒导热模型中排除界面电阻时,燃烧速率预测的误差会增加到20%。还观察到燃烧速率随粒度的倒数而变化。最后,还分析了燃烧速率对颗粒导热系数模型各个组成部分的敏感性。结果表明,界面电导和氧化物热导率均降低了两个数量级,燃烧速率降低了30%。但是,燃烧速度仅下降了15%,铝热导率也有类似的下降。提出了纳米复合材料中火焰传播的热传导观点,确定了能量传输的最高和最低传导路径。 (C)2018年由Elsevier Inc.代表燃烧研究所出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号