首页> 外文会议>ASME/JSME thermal engineering joint conference;AJTEC2011 >ROLE OF INTERFACE THERMAL BOUNDARY RESISTANCE, STRAINING, AND MORPHOLOGY IN THERMAL CONDUCTIVITY OF A SET OF SI-GE SUPERLATTICES AND BIOMIMETIC SI-GE NANOCOMPOSITES
【24h】

ROLE OF INTERFACE THERMAL BOUNDARY RESISTANCE, STRAINING, AND MORPHOLOGY IN THERMAL CONDUCTIVITY OF A SET OF SI-GE SUPERLATTICES AND BIOMIMETIC SI-GE NANOCOMPOSITES

机译:界面热边界电阻,应变和形态在一组SI-GE超级晶格和生物同质SI-GE纳米复合材料的热导率中的作用

获取原文

摘要

Nanoscale engineered materials with tailored thermal properties are desirable for applications such as highly efficient thermoelectric, microelectronic and optoelectronic devices. It has been shown earlier that by judiciously varying interface thermal boundary resistance (TBR) thermal conductivity in nanostructures could be controlled. Two types of nanostructures that have gained significant attention owing to the presence of TBR are superlattices and nanocomposites. A systematic comparison of thermal behavior of superlattices and nanocomposites considering their characteristic structural factors such as periodicity and period length for superlattices, and morphology for nanocomposites, under different extents of straining at a range of temperatures remains to be performed. In this presented work, such analyses are performed for a set of Si-Ge superlattices and Si-Ge biomimetic nanocomposites using non-equilibrium molecular dynamics (NEMD) simulations at three different temperatures (400 K, 600 K, and 800 K) and at strain levels varying between -10% and 10%. The analysis of interface TBR contradicts the usual notion that each interface contributes equally to the heat transfer resistance in a layered structure. The dependence of thermal conductivity of superlattice on the direction of heat flow gives it a characteristic somewhat similar to a thermal diode as found in this study. The comparison of thermal behavior of superlattices and nanocomposites indicate that the nanoscale morphology differences between the superlattices and the nanocomposites lead to a striking contrast in the phonon spectral density, interfacial thermal boundary resistance, and thermal conductivity. Both compressive and tensile strains are observed to be important factors in tailoring the thermal conductivity of the analyzed superlattices, whereas have very insignificant influence on the thermal conductivity of the analyzed nanocomposites.
机译:具有定制的热性能的纳米级工程材料对于诸如高效热电,微电子和光电器件的应用是合乎需要的。先前已经表明,通过明智地改变界面热边界电阻(TBR),可以控制纳米结构中的热导率。由于存在TBR,引起人们极大关注的两种类型的纳米结构是超晶格和纳米复合材料。考虑到超晶格和纳米复合材料的特征结构因素(例如,超晶格的周期性和周期长度以及纳米复合材料的形态),在一定温度范围内的不同应变程度下,需要对它们的热行为进行系统比较。在本工作中,使用非平衡分子动力学(NEMD)模拟在三个不同的温度(400 K,600 K和800 K)以及温度分别为一组Si-Ge超晶格和Si-Ge仿生纳米复合材料进行了此类分析。应变水平在-10%到10%之间变化。界面TBR的分析与通常的观念相矛盾,即每个界面在层状结构中均对传热阻力有同等贡献。超晶格的热导率对热流方向的依赖性使其特性与本研究中发现的热敏二极管有些相似。超晶格和纳米复合材料的热行为比较表明,超晶格和纳米复合材料之间的纳米尺度形态差异导致声子光谱密度,界面热边界电阻和热导率形成鲜明对比。观察到压缩应变和拉伸应变都是调整所分析的超晶格的热导率的重要因素,而对所分析的纳米复合材料的热导率的影响却很小。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号