首页> 外文期刊>Cold regions science and technology >Numerical and experimental studies on the airflow around the low-rise flat-roof buildings with different stable snowdrifts
【24h】

Numerical and experimental studies on the airflow around the low-rise flat-roof buildings with different stable snowdrifts

机译:具有不同稳定雪堆的低层平顶建筑周围气流的数值和实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, the airflow characteristics around an isolated flat-roof building with different stable snowdrifts were investigated by adopting the Particle-Image-Velocimetry (PIV) wind tunnel experiments and Large-Eddy Simulations. First, the geometric model to be tested was obtained using a 3D printing technique, where the snowdrift pattern on the roof was provided by the results of previous wind tunnel tests conducted by the authors. Second, PIV wind tunnel experiments were carried out to measure flow information on the middle plane of the tested models (with or without snow cover). The specific physical variables (such as mean wind velocity, turbulence kinetic energy (TKE)) was then systematically analysed, which will be an important validation database to verify the LES method. Finally, the effects of the snowdrift on the time-averaged flow field, the turbulence flow field, and the wind load force acting on the buildings were discussed in detail using the LES method. The relevant research results indicate that the existence of snowdrifts changed the geometrical aerodynamic characteristics of the original roof, rendering the shape more streamlined. Thus, it significantly accelerated the passing velocity of the incoming flow over the roof, which results in the decreasing magnitudes of time-averaged Reynold stresses in the flow field above the roof. Additionally, the existence of snowdrifts can effectively restrain the size of the separation bubbles in the separating-reattachment flow field, which leads to vortices of smaller size and higher frequency being formed on the roof. Furthermore, the mean and fluctuations of wind pressure on the windward side of snowdrifts roof have larger magnitude than a roof without snow, which may increase the risk of damage to local enclosure structures near the windward side of the roof.
机译:在这项研究中,通过采用粒子图像 - 速度(PIV)风隧道实验和大涡模拟,研究了具有不同稳定的雪堆的隔离平屋顶建筑周围的气流特性。首先,使用3D打印技术获得要测试的几何模型,其中屋顶上的雪花飘倾图案由作者进行的先前风洞测试的结果提供。其次,进行PIV风洞实验,以测量测试模型的中间平面上的流量信息(有或没有雪覆盖)。然后系统地分析了特定的物理变量(例如平均风速,湍流动能(TKE)),这将是验证LES方法的重要验证数据库。最后,使用LES方法详细讨论了在时间平均流场,湍流流场和作用在建筑物上作用的风力荷载力的影响。相关的研究结果表明,雪堆的存在改变了原始屋顶的几何空气动力学特性,使形状更加流动。因此,它显着加速了屋顶上的进入流动的通过速度,这导致屋顶上方的流场中的时间平均雷诺应力的大小。另外,雪堆的存在可以有效地限制分离式重新连接流场中的分离气泡的尺寸,这导致较小尺寸和在屋顶上形成更高频率的涡流。此外,雪花屋顶迎风侧的风压的平均值和波动比没有雪的屋顶更大的大小,这可能会增加屋顶迎风侧附近局部外壳结构的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号