首页> 外文期刊>Cold regions science and technology >Parallel channels' fracturing mechanism during ice management operations. Part Ⅰ: Theory
【24h】

Parallel channels' fracturing mechanism during ice management operations. Part Ⅰ: Theory

机译:冰管理操作中平行通道的压裂机制。第一部分:理论

获取原文
获取原文并翻译 | 示例
           

摘要

It is frequently observed that long cracks in sea-ice tend to form between parallel channels during ice management operations. The long cracks that develop play an important role in reducing the size of the managed ice floes, which is one of the main goals in an ice management operation. However, the fracture mechanism behind these long cracks remains unclear. To address this issue, a comprehensive study is reported here in two associated papers. In the current paper (i.e., Paper I), an edge-crack theoretical model is proposed to elucidate the parallel channels' fracture mechanism. The proposed theoretical model is partially based on theories regarding ship – level ice interactions and partially based on previous studies on the general ice fracturing mechanism. The edge-crack theoretical model is extensively examined using a separately developed numerical scheme based on the eXtended Finite Element Method (XFEM), which allows for the existence of a singularity field and displacement jump within conventional Finite Elements (i.e., FEM). The numerical scheme is benchmarked against known asymptotic analytical solutions and field experiments. Afterwards, with the developed numerical scheme, through fitting numerical simulation results in terms of the edge crack's Stress Intensity Factors (SIFs) and a relevant asymptotical analysis, we managed to derive a group of closed-form formulae with wide application ranges. For the current engineering problem, this set of formulae quantifies the maximum parallel channel spacinghmax, beyond which the observed parallel channels' fracturing events cease to occur. Moreover, the same numerical scheme is utilised to study parallel channels' fracturing paths. Based on the XFEM-based crack path simulations, a second group of formulae and a numerical recipe were obtained to characterise a simplified crack path. This set of equations enables us to quantify the maximum floe sizeLMCDthat can be generated between two parallel channels and its corresponding floe size ratio. In the sequel paper (i.e., Paper II), these equations are validated by a series of well-controlled field experiments undertaken during the Oden Arctic Technology Research Cruise of 2015 (OATRC2015).
机译:经常观察到,在冰管理操作期间,平行通道之间容易形成海冰的长裂缝。产生的长裂纹在减小受控浮冰的尺寸方面起着重要作用,这是制冰操作的主要目标之一。但是,这些长裂缝背后的断裂机理仍不清楚。为了解决此问题,此处在两篇相关的论文中进行了全面的研究报告。在当前的论文(即论文I)中,提出了一种边缘裂纹理论模型来阐明平行通道的断裂机理。所提出的理论模型部分基于关于船级冰相互作用的理论,部分基于先前对一般冰破裂机理的研究。使用基于扩展有限元方法(XFEM)的单独开发的数值方案对边缘裂纹理论模型进行了广泛检查,该方法允许在常规有限元(​​FEM)中存在奇异场和位移跳跃。该数值方案以已知的渐近解析解和现场实验为基准。然后,利用已开发的数值方案,通过对边缘裂纹的应力强度因子(SIF)进行数值模拟拟合并进行相关的渐近分析,我们设法导出了一组具有广泛应用范围的封闭形式公式。对于当前的工程问题,这组公式对最大平行通道间距hmax进行量化,超过该最大间距时,观察到的平行通道的破裂事件将不再发生。此外,利用相同的数值方案来研究平行通道的压裂路径。基于基于XFEM的裂纹路径模拟,获得了第二组公式和数值配方,以表征简化的裂纹路径。这组方程使我们能够量化两个平行通道之间可能产生的最大絮凝物尺寸LMCD及其对应的絮凝物尺寸比。在续篇论文(即论文II)中,通过在2015年奥登北极技术研究巡游(OATRC2015)期间进行的一系列良好控制的现场实验验证了这些方程式。

著录项

  • 来源
    《Cold regions science and technology》 |2018年第12期|102-116|共15页
  • 作者单位

    Sustainable Arctic Marine and Coastal Technology (SAMCoT), Centre for Research-based Innovation (CRI), Norwegian University of Science and Technology (NTNU);

    Sustainable Arctic Marine and Coastal Technology (SAMCoT), Centre for Research-based Innovation (CRI), Norwegian University of Science and Technology (NTNU);

    Sustainable Arctic Marine and Coastal Technology (SAMCoT), Centre for Research-based Innovation (CRI), Norwegian University of Science and Technology (NTNU);

    Sustainable Arctic Marine and Coastal Technology (SAMCoT), Centre for Research-based Innovation (CRI), Norwegian University of Science and Technology (NTNU);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Edge crack; XFEM; Parallel channel; Ice fracture; Ice management; 25;

    机译:边缘裂纹;XFEM;平行通道;冰破裂;冰管理;25;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号