首页> 外文期刊>Coastal engineering >Shear stress and sediment transport calculations for sheet flow under waves
【24h】

Shear stress and sediment transport calculations for sheet flow under waves

机译:波浪作用下片流的剪应力和泥沙输移计算

获取原文
获取原文并翻译 | 示例
           

摘要

A simple method is provided for calculating transport rates of not too fine (d_(50) ≥ 0.20mm) sand under sheet flow conditions. The method consists of a Meyer-Peter-type transport formula operating on a time-varying Shields parameter, which accounts for both acceleration-asymmetry and boundary layer streaming. While velocity moment formulae, e.g.., Q_s = Constant x u_∞~3, calibrated against U-tube measurements, fail spectacularly under some real waves (Ribberink, J.S., Dohmen-Janssen, C.M., Hanes, D.M., McLean, S.R., Vincent, C., 2000. Near-bed sand transport mechanisms under waves. Proc. 27th Int. Conf. Coastal Engineering, Sydney, ASCE, New York, pp. 3263-3276, Fig. 12), the new method predicts the real wave observations equally well. The reason that the velocity moment formulae fail under these waves is partly the presence of boundary layer streaming and partly the saw-tooth asymmetry, i.e., the front of the waves being steeper than the back. Waves with saw-tooth asymmetry may generate a net landward sediment transport even if u_∞~3 = 0, because of the more abrupt acceleration under the steep front. More abrupt accelerations are associated with thinner boundary layers and greater pressure gradients for a given velocity magnitude. The two "real wave effects" are incorporated in a model of the form Q_s(t) = Q_s[θ(t)] rather than Q_s(t) = Q_s[u_∞(t)], i.e., by expressing the transport rate in terms of an instantaneous Shields parameter rather than in terms of the free stream velocity, and accounting for both streaming and accelerations in the θ(t) calculations. The instantaneous friction velocities u*(t) and subsequently θ(t) are calculated as follows. Firstly, a linear filter incorporating the grain roughness friction factor f_(2.5) and a phase angle φ_τ is applied to u_∞(t). This delivers u*(t) which is used to calculate an instantaneous grain roughness Shields parameter θ_(2.5)(t). Secondly, a constant bed shear stress is added which corresponds to the "streaming related bed shear stress" -ρ(uw)_∞. The method can be applied to any u_∞(t) time series, but further experimental validation is recommended before application to conditions that differ strongly from the ones considered below. The method is not recommended for rippled beds or for sheet flow with typical prototype wave periods and d_(50) < 0.20mm. In such scenarios, time lags related to vertical sediment movement become important, and these are not considered by the present model.
机译:提供了一种简单的方法来计算薄板流条件下不太细的砂子(d_(50)≥0.20mm)的输送速度。该方法由对时变Shields参数运行的Meyer-Peter型传输公式组成,该公式考虑了加速度不对称和边界层流。虽然针对U型管测量校准的速度矩公式(例如Q_s =常数xu_∞〜3)在某些实际波(Ribberink,JS,Dohmen-Janssen,CM,Hanes,DM,McLean,SR,Vincent)下明显失败,C.,2000年,《波浪作用下的近地层砂运移机理》,Proc。27th Int。Conf。Coastal Engineering,悉尼,ASCE,纽约,第3263-3276页,图12),这种新方法可以预测真实的波浪观察同样好。速度矩公式在这些波下失效的原因部分是由于存在边界层流,而部分是由于锯齿不对称,即波的前部比后部陡。即使在u_∞〜3 = 0的情况下,具有锯齿形不对称性的波浪也可能产生净的陆上沉积物迁移,这是因为在陡峭的前沿下加速度更大。对于给定的速度幅度,更快的加速度与更薄的边界层和更大的压力梯度相关。这两个“实波效应”以形式Q_s(t)= Q_s [θ(t)]而不是Q_s(t)= Q_s [u_∞(t)]的形式合并到模型中,即通过表示传输速率取决于瞬时Shields参数而不是自由流速度,并考虑θ(t)计算中的流和加速度。瞬时摩擦速度u *(t)和随后的θ(t)的计算如下。首先,将包含晶粒粗糙度摩擦系数f_(2.5)和相位角φ_τ的线性滤波器应用于u_∞(t)。这提供了u *(t),用于计算瞬时晶粒粗糙度Shields参数θ_(2.5)(t)。其次,增加一个恒定的床层剪切应力,该应力对应于“流相关床层剪切应力”-ρ(uw)_∞。该方法可以应用于任何u_∞(t)时间序列,但是在应用于与以下考虑的条件有很大差异的条件之前,建议进一步进行实验验证。不建议将该方法用于波纹床或典型波周期为d_(50)<0.20mm的薄板流动。在这种情况下,与垂直泥沙运动有关的时滞变得很重要,而本模型并未考虑这些时滞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号