首页> 外文期刊>Clean technologies and environmental policy >Biochar production from microalgae cultivation through pyrolysis as a sustainable carbon sequestration and biorefinery approach
【24h】

Biochar production from microalgae cultivation through pyrolysis as a sustainable carbon sequestration and biorefinery approach

机译:从微藻培养到热解的生物炭生产,作为可持续的碳固存和生物精炼方法

获取原文
获取原文并翻译 | 示例
           

摘要

Microalgae cultivation and biomass to biochar conversion is a potential approach for global carbon sequestration in microalgal biorefinery. Excessive atmospheric carbon dioxide (CO~(2)) is utilized in microalgal biomass cultivation for biochar production. In the current study, microalgal biomass productivity was determined using different CO~(2)concentrations for biochar production, and the physicochemical properties of microalgal biochar were characterized to determine its potential applications for carbon sequestration and biorefinery. The indigenous microalga Chlorella vulgaris FSP-E was cultivated in photobioreactors under controlled environment with different CO~(2)gas concentrations as the sole carbon source. Microalgal biomass pyrolysis was performed thereafter in a fixed-bed reactor to produce biochar and other coproducts. C. vulgaris FSP-E showed a maximum biomass productivity of 0.87 g L_(−1) day_(−1). A biochar yield of 26.9% was obtained from pyrolysis under an optimum temperature of 500 °C at a heating rate of 10 °C min_(−1). C. vulgaris FSP-E biochar showed an alkaline pH value of 8.1 with H/C and O/C atomic ratios beneficial for carbon sequestration and soil application. The potential use of microalgal biochar as an alternative coal was also demonstrated by the increased heating value of 23.42 MJ kg_(−1). C. vulgaris FSP-E biochar exhibited a surface morphology, thereby suggesting its applicability as a bio-adsorbent. The cultivation of microalgae C. vulgaris FSP-E and the production of its respective biochar is a potential approach as clean technology for carbon sequestration and microalgal biorefinery toward a sustainable environment.
机译:微藻培养和生物质向生物炭的转化是微藻生物精炼厂全球碳固存的一种潜在方法。过量的大气二氧化碳(CO〜(2))被用于微藻生物质的培养,以生产生物炭。在当前的研究中,使用不同的CO〜(2)浓度确定微藻生物质的生产率以生产生物炭,并对微藻生物炭的理化特性进行表征,以确定其在碳固存和生物精炼中的潜在应用。在可控环境下,以不同的CO〜(2)气体浓度为唯一碳源,在光生物反应器中培养了本地微藻小球藻FSP-E。此后,在固定床反应器中进行微藻生物质热解,以生产生物炭和其他副产物。普通梭菌FSP-E的最大生物量生产力为0.87克L _(-1)天_(-1)。在500°C的最佳温度下以10°C min _(-1)的加热速率进行热解可获得26.9%的生物炭产率。普通梭菌FSP-E生物炭的碱性pH值为8.1,H / C和O / C原子比有利于固碳和土壤施用。通过增加23.42 MJ kg _(-1)的发热量还证明了微藻生物炭作为替代煤炭的潜在用途。寻常梭状芽孢杆菌FSP-E生物炭表现出表面形态,从而表明其作为生物吸附剂的适用性。微藻小球藻FSP-E的培养及其相应生物炭的生产是一种潜在的方法,可作为清洁技术用于固碳和微藻生物精炼厂以实现可持续环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号