...
首页> 外文期刊>Circuits, Devices & Systems, IET >Low power sub-threshold asynchronous quasi-delay-insensitive 32-bit arithmetic and logic unit based on autonomous signal-validity half-buffer
【24h】

Low power sub-threshold asynchronous quasi-delay-insensitive 32-bit arithmetic and logic unit based on autonomous signal-validity half-buffer

机译:基于自主信号有效性半缓冲的低功耗亚阈值异步准延迟不敏感32位算术和逻辑单元

获取原文
获取原文并翻译 | 示例
           

摘要

The authors propose an asynchronous-logic (async) quasi-delay-insensitive (QDI) autonomous signal-validity half-buffer (ASVHB) realisation approach for low power sub-threshold operation ( = 0.2 V). There are three key attributes in the proposed ASVHB realisation approach. First, the ASVHB realisation approach embodies integrated autonomous validity signals, which are unique and are used exclusively to simplify the circuit implementation for QDI protocol. Second, the ASVHB realisation approach applies the fine-grained gate-level method, which propagates data through a single-cell datapath pipeline to maximise the throughput rate. Third, the ASVHB realisation approach adopts the static-logic implementation, which maintain stable output states (by connecting them directly to the power rails), to feature high robustness for sub-threshold operation. They compare their ASVHB realisation approach against the competitive reported weak-conditioned half-buffer (WCHB) and pre-charged half-buffer (PCHB) realisation approaches. The WCHB and PCHB library cells, on average, require ∼2.1 × and ∼1.9 × more transistors than the ASVHB library cells. With respect to a 3-stage pipeline realisation, the WCHB and PCHB pipelines, on average, require 1.8 × and 1.5× more transitions per-cycle than the ASVHB pipeline. They design an async 32-bit arithmetic and logic unit (ALU) based on the proposed ASVHB realisation approach (at 65 nm CMOS process). Their ASVHB ALU occupies 0.092 mm, and in many merits, outperforms the WCHB and PCHB counterparts. The WCHB and PCHB counterparts require ∼1.7 × and ∼1.4× more transistors, respectively, than their design. At the sub-threshold voltage of = 0.2 V, the WCHB and PCHB counterparts dissipate ∼1.7× and ∼2.6× more energy, respectively, and are, respectively, ∼0.95× and &- x223c;0.73× slower throughput.
机译:作者提出了一种用于低功耗亚阈值操作(= 0.2 V)的异步逻辑(async)准延迟不敏感(QDI)自治信号有效性半缓冲(ASVHB)实现方法。所提出的ASVHB实现方法具有三个关键属性。首先,ASVHB实现方法体现了集成的自主有效性信号,这些信号是唯一的,专门用于简化QDI协议的电路实现。其次,ASVHB实现方法采用了细粒度的门级方法,该方法通过单单元数据路径管道传播数据以最大化吞吐率。第三,ASVHB实现方法采用静态逻辑实现,可保持稳定的输出状态(通过将它们直接连接到电源轨),从而具有亚阈值操作的高鲁棒性。他们将其ASVHB实现方法与竞争性报道的弱条件半缓冲(WCHB)和预充电半缓冲(PCHB)实现方法进行了比较。与ASVHB库单元相比,WCHB和PCHB库单元平均需要约2.1×和1.9×更多的晶体管。关于三阶段流水线实现,与ASVHB流水线相比,WCHB和PCHB流水线平均每个周期所需的过渡次数分别多1.8倍和1.5倍。他们基于提出的ASVHB实现方法(在65 nm CMOS工艺下)设计了一个异步32位算术和逻辑单元(ALU)。它们的ASVHB ALU占0.092毫米,在许多优点上都优于WCHB和PCHB。 WCHB和PCHB对应的晶体管比其设计分别多需要约1.7和1.4倍的晶体管。在亚阈值电压= 0.2 V时,WCHB和PCHB对应的功耗分别增加了约1.7倍和2.6倍,并且吞吐速度分别降低了约0.95倍和-223c; 0.73倍。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号