首页> 外文期刊>Chemosphere >Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand
【24h】

Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand

机译:多孔砂中磷酸盐存在下金红石型钛白粉与蒙脱土和硅藻土的聚集和迁移

获取原文
获取原文并翻译 | 示例
       

摘要

Crop soil is inevitably contaminated by the excess of phosphate (P) fertilizers. A large amount of nanoparticle titanium dioxide (nTiO(2)) entered soils as well due to the wide use of engineered nanomaterials. It is of great urgency and a high priority to investigate the mechanisms of nTiO(2) deposition with the presence of P in crop soils. This study investigated the transport behavior of (1.0 g L-1) rutile nTiO(2) with two representative clay particles (montmorillonite or diatomite) in the presence of P through the saturated quartz sand. In 10 mM NaCl electrolyte solution at pH 6.0, the recovery percentage of nTiO(2) was 36.3% from sand column. Nevertheless, it was reduced to 18.6% and 11.1% while montmorillonite and diatomite present in suspensions, respectively. Obviously, the improvement of nTiO(2) retention in sand was more pronounced by diatomite than montmorillonite. The likely mechanism for this result was that large aggregates were formed due to the attachment of nTiO(2) to montmorillonite and diatomite. Moreover, the surface of diatomite with the larger hydrodynamic radius was less negatively charged by comparison with montmorillonite. However, this phenomenon disappeared with the addition of P. P adsorption increases the repulsive force between particles and sand and the fast release of attached nTiO(2)-montmorillonite and diatomite from sand. The two-site kinetic retention model and the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggested that the combination of k(1/)k(1d), k(2) and secondary minimum energy can be used to accurately describe the attachment of nTiO(2)-montmorillonite and diatomite to sand in the presence of P. (C) 2018 Elsevier Ltd. All rights reserved.
机译:过量的磷酸盐(P)肥料不可避免地污染了作物土壤。由于工程纳米材料的广泛使用,大量的纳米级二氧化钛(nTiO(2))也进入土壤。研究在农作物土壤中存在P的nTiO(2)沉积机理是当务之急,也是当务之急。这项研究调查了(1.0 g L-1)金红石型nTiO(2)与两个代表性粘土颗粒(蒙脱土或硅藻土)在P存在下通过饱和石英砂的传输行为。在pH 6.0的10 mM NaCl电解质溶液中,从砂塔中回收的nTiO(2)率为36.3%。然而,悬浮液中蒙脱石和硅藻土的含量​​分别降低到18.6%和11.1%。显然,硅藻土比蒙脱土对nTiO(2)保留在沙子中的改善更为明显。此结果的可能机制是由于将nTiO(2)附着在蒙脱土和硅藻土上而形成了大的聚集体。而且,与蒙脱土相比,具有较大流体动力学半径的硅藻土的表面带负电少。但是,这种现象随着P的添加而消失。P吸附增加了颗粒与沙子之间的排斥力,并使附着的nTiO(2)-蒙脱土和硅藻土从沙子中快速释放。两点动力学保留模型和Derjaguin-Landau-Verwey-Overbeek(DLVO)理论表明,k(1 /)k(1d),k(2)和次要最小能量的组合可用于准确描述在P.(C)2018 Elsevier Ltd.存在下将nTiO(2)-蒙脱土和硅藻土附着到沙子上。保留所有权利。

著录项

  • 来源
    《Chemosphere》 |2018年第8期|327-334|共8页
  • 作者单位

    Suzhou Univ Sci & Technol, Sch Chem Biol & Mat Engn, Jiangsu Key Lab Environm Funct Mat, Suzhou 215009, Peoples R China;

    Suzhou Univ Sci & Technol, Sch Chem Biol & Mat Engn, Jiangsu Key Lab Environm Funct Mat, Suzhou 215009, Peoples R China;

    Suzhou Univ Sci & Technol, Sch Chem Biol & Mat Engn, Jiangsu Key Lab Environm Funct Mat, Suzhou 215009, Peoples R China;

    Suzhou Univ Sci & Technol, Sch Chem Biol & Mat Engn, Jiangsu Key Lab Environm Funct Mat, Suzhou 215009, Peoples R China;

    Suzhou Univ Sci & Technol, Sch Chem Biol & Mat Engn, Jiangsu Key Lab Environm Funct Mat, Suzhou 215009, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rutile nanoparticle titanium dioxides (nTiO(2)); Phosphate; Transport; Montmorillonite; Diatomite; Model;

    机译:金红石型纳米二氧化钛(nTiO(2));磷酸盐;运输;蒙脱土;硅藻土;模型;
  • 入库时间 2022-08-17 13:46:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号