首页> 外文期刊>Chemosphere >Real-time analysis of atrazine biodegradation and sessile bacterial growth: A quartz crystal microbalance with dissipation monitoring study
【24h】

Real-time analysis of atrazine biodegradation and sessile bacterial growth: A quartz crystal microbalance with dissipation monitoring study

机译:r去津生物降解和无柄细菌生长的实时分析:具有耗散监测研究的石英微天平

获取原文
获取原文并翻译 | 示例
           

摘要

Biodegradation is a fundamental process for removal of the environmentally prevalent herbicide, atrazine, from contaminated waters. Biodegradation is more efficient when bacteria are attached on surface of an adsorbing carrier that supports the microbial population. However, for various reasons, biodegradation is almost always monitored in the liquid phase. In this study, we employ a novel Quartz Crystal Microbalance with Dissipation technique (QCM-D) for continuous, real-time monitoring of the attachment of atrazine-degrading bacteria to the surface, atrazine adsorption and degradation, and the consequent proliferation of the irreversibly attached sessile bacteria. The effect of atrazine biodegradation was observed in a batch mode of operation, in which a significant frequency decrease of the piezoelectric sensor was observed in the QCM-D, due to the proliferation of atrazine-degrading bacteria on the expense of atrazine. The latter was confirmed microscopically. Results also suggest that the viscoelastic properties of the atrazine-degrading consortium immediately changed in response to the presence of atrazine, whereas those of the non-degrading consortium were not affected. Importantly though, atrazine adsorption was similar regardless of the sessile consortia layers. When the QCM-D flow cell was exposed to a continuous flow of saturated atrazine solution, the degrading consortium layer was significantly more fluidic compared to batch mode conditions. The magnitude and kinetics of atrazine adsorption, which were monitored using QCM-D, were higher on bacterial cells comparing to the pristine, polystyrene-coated sensor. Findings from the current study can improve bioremediation design and open an avenue for studies on biodegradation and adsorption of micro-pollutants using QCM-D technology. (C) 2019 Elsevier Ltd. All rights reserved.
机译:生物降解是从受污染的水中去除环境中常见的除草剂阿特拉津的基本过程。当细菌附着在支持微生物种群的吸附载体表面时,生物降解效率更高。然而,由于各种原因,几乎总是在液相中监测生物降解。在这项研究中,我们采用了一种新型的具有耗散特性的石英晶体微天平(QCM-D),用于连续,实时地监测降解at去津的细菌与表面的附着,at去津的吸附和降解以及随之而来的不可逆扩散附着的无柄细菌。在间歇操作模式中观察到of去津生物降解的效果,其中在QCM-D中观察到压电传感器的频率显着下降,这是由于降解at去津的细菌以on去津为代价而引起的。后者在显微镜下证实。结果还表明,降解of去津的财团的粘弹性性质随in去津的存在而立即改变,而未降解财团的粘弹性特性不受影响。但是重要的是,不管无柄聚生层如何,阿特拉津的吸附都是相似的。当QCM-D流通池暴露于连续的饱和at去津溶液流中时,与间歇模式条件相比,降解的聚结层的流动性明显更高。与原始的聚苯乙烯涂层传感器相比,使用QCM-D监测的at去津吸附的幅度和动力学在细菌细胞上更高。当前研究的结果可以改善生物修复设计,并为使用QCM-D技术进行微污染物的生物降解和吸附研究开辟道路。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Chemosphere》 |2019年第6期|871-879|共9页
  • 作者单位

    Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Albert Katz Int Sch Desert Studies, Sede Boqer Campus, Beer Sheva, Israel;

    Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Albert Katz Int Sch Desert Studies, Sede Boqer Campus, Beer Sheva, Israel;

    Monash Univ, EPHM Lab, Dept Civil Engn, Clayton, Vic, Australia;

    Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Albert Katz Int Sch Desert Studies, Sede Boqer Campus, Beer Sheva, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Atrazine removal; Biodegradation; QCM-D; Bioremediation; Adsorption-desorption; Degrading consortium; Solid-liquid interface; Real time monitoring;

    机译:去津;生物降解;QCM-D;生物修复;吸附解吸;降解协会;固液界面;实时监测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号