...
首页> 外文期刊>Chemistry - A European Journal >Synthesis, Characterization, and Photoinduced Energy and Electron Transfer in a Supramolecular Tetrakis (Ruthenium(II) Phthalocyanine) Perylenediimide Pentad
【24h】

Synthesis, Characterization, and Photoinduced Energy and Electron Transfer in a Supramolecular Tetrakis (Ruthenium(II) Phthalocyanine) Perylenediimide Pentad

机译:超分子四(钌(II)酞菁)Per二酰亚胺五元共聚物的合成,表征以及光诱导能和电子转移

获取原文
获取原文并翻译 | 示例

摘要

Metal coordination was probed as a versatile approach for designing a novel electron donor/acceptor hybrid [PDIpy4{Ru(CO)Pc}4] (1), in which four pyridines placed at the bay region of a perylenediimides (PDIpy4) coordinate with four ruthenium phthalocyanine units [Ru(CO)Pc]. This structural motif was expected to promote strong electronic coupling between the electron donors and the electron acceptor, a hypothesis that was confirmed in a full-fledged physicochemical investigation focusing on the ground and excited state reactivities. As far as the ground state is concerned, absorption and electrochemical assays indeed reveal a notable redistribution of electron density, that is, from the electron-donating [Ru(CO)Pc] to the electron-accepting PDIpy4. The most important thing to note in this context is that both the [Ru(CO)Pc] oxidation and the PDIpy4 reduction are rendered more difficult in 1 than in the individual building blocks. Likewise, in the excited state, strong electronic communication is the inception for a rapid charge-transfer process in photoexcited 1. Regardless of exciting [Ru(CO)Pc] or PDIpy4, spectral characteristics of the [RuPc] radical cation (broad absorptive features from 425 to 600 nm with a maximum at 575 nm, as well as a band centered at 725 nm) and of the PDI radical anion (780 nm maximum) emerge. The correspondingly formed radical ion pair state lasts for up to several hundred picoseconds in toluene, for example. On the other hand, employing more polar solvents, such as dichloromethane, destabilizes the radical ion pair state.
机译:探索金属配位作为设计新型电子给体/受体杂化体[PDIpy 4 {Ru(CO)Pc} 4 ]的通用方法,其中四个放在a二酰亚胺(PDIpy 4 )海湾区的吡啶与四个钌酞菁单元[Ru(CO)Pc]配位。预期该结构基序将促进电子给体与电子受体之间的强电子耦合,这一假设已在侧重于基态和激发态反应性的全面物理化学研究中得到证实。就基态而言,吸收和电化学分析确实显示了电子密度的显着重新分布,即从给电子[Ru(CO)Pc]到接受电子的PDIpy 4 。在这方面要注意的最重要的一点是,[Ru(CO)Pc]氧化和PDIpy 4 的还原都比单独的结构单元难于1。同样,在激发态下,强电子通信是光激发1中快速电荷转移过程的开始。不管激发[Ru(CO)Pc]或PDIpy 4 ,[出现了RuPc]自由基阳离子(从425到600 tonm的宽吸收特征,最大吸收峰在575 nm,以及一个以725 nm为中心的谱带)和PDI自由基阴离子(最大780 nm)出现。例如,相应形成的自由基离子对状态在甲苯中持续长达数百皮秒。另一方面,使用更多的极性溶剂,例如二氯甲烷,会使自由基对的状态不稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号