首页> 外文期刊>Chemical Engineering and Processing >Sorptive separation of ethanol-water mixtures with a bi-dispersed hydrophobic molecular sieve, silicalite: determination of the controlling mass transfer mechanism
【24h】

Sorptive separation of ethanol-water mixtures with a bi-dispersed hydrophobic molecular sieve, silicalite: determination of the controlling mass transfer mechanism

机译:用双分散疏水分子筛,硅沸石对乙醇-水混合物的吸附分离:控制传质机理的确定

获取原文
获取原文并翻译 | 示例
           

摘要

Sorption of ethanol and water in bi-dispersed pellets formed by compaction of a hydrophobic crystalline molecular sieve, silicalite, is examined. The difficulties inherent in the measurement and interpretation of mixed liquid adsorption equilibria are discussed and the individual adsorption isotherms for {ethanol-water}/silicalite crystals presented. The adsorbed ethanol exhibits a density similar but smaller than that of liquid ethanol. The adsorbed water, however, is as much as four times lighter than liquid water. Diffusion of ethanol in the silicalite micropores is reasonably well described with a constant diffusivity of 5 x 10~(-14) m~2s~(-1). The intracrystalline diffusivity of water is higher than that of ethanol at low loading but is drastically reduced as saturation is approached. A sensitivity analysis based on a detailed theoretical model yields the characteristic time constants of 3.3 s for external boundary layer mass transfer, 83.9 s for diffusion through the liquid filled macropores of the pellets and 0.03 s for diffusion in the micropores of the embedded crystals. The intraparticle transport is therefore firmly controlled by the macropore diffusion and can be described in terms of a pore diffusion model with the embedded crystals assumed in point wise local equilibrium with the macro pore fluid.
机译:考察了乙醇和水在通过疏水性结晶分子筛硅沸石的压实形成的双分散颗粒中的吸附。讨论了测量和解释混合液体吸附平衡所固有的困难,并提出了{乙醇-水} /硅沸石晶体的单个吸附等温线。吸附的乙醇显示出与液体乙醇相似但较小的密度。然而,被吸收的水比液态水轻四倍之多。合理的描述了乙醇在硅质岩微孔中的扩散,其恒定扩散率为5 x 10〜(-14)m〜2s〜(-1)。在低负荷下,水的晶体内扩散率高于乙醇,但随着接近饱和,其晶体内扩散率大大降低。基于详细理论模型的灵敏度分析得出的特征时间常数为3.3 s,用于外部边界层传质,83.9 s,用于扩散通过颗粒的液体填充大孔,0.03 s,用于扩散在嵌入晶体的微孔中。因此,颗粒内的传输受到大孔扩散的严格控制,并且可以用孔隙扩散模型来描述,其中嵌入的晶体假定与大孔隙流体呈点状局部平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号