...
首页> 外文期刊>Biomass & bioenergy >An investigation into the effect of fast heating on fluidity development and coke quality for blends of coal and biomass
【24h】

An investigation into the effect of fast heating on fluidity development and coke quality for blends of coal and biomass

机译:快速加热对煤和生物质混合物的流动性发展和焦炭质量的影响研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The addition of biomass to coking coals can reduce operational costs and carbon emissions but also reduces fluidity development. The use of heating rates up to 20 ℃ min~1 in the softening stage of coal has been investigated using high-temperature small-amplitude oscillatory-shear (SAOS) rheometry to improve the fluid characteristics of binary blends of two coking coals with Scots pine. The effects of biomass concentration and particle size, biomass torrefaction, pellet mass and thermal pre-treatment of the blend on fluidity development and semicoke strength have also been studied. Fluidity increased with an increase in heating rate and an increase in the final temperature for fast heating. Relationships were found between the minimum complex viscosity of the blend, the heating rate and the concentration of biomass, which have been used to propose an equation to calculate the heating rate necessary to achieve optimum fluidity for a particular blend with biomass. The fluid characteristics of the blend were not affected to a great extent by the particle sizes of the biomass studied (<500 μm and >500 μm) or the torrefaction of the biomass (250 ℃ for 1 h in N_2), were increased by an increase in pellet mass, and were destroyed by blend pre-heating. The semicoke strength of the blend with a mass fraction of 10% Scots pine and fast heating (10 ℃ min ~1) proved to be higher than that of the coal alone with slow heating (3 ℃ min ~1) and resulted in a 3% reduction in non-renewable carbon emissions.
机译:在焦煤中添加生物质可以降低运营成本和碳排放,但也可以减少流动性的发展。通过高温小振幅振荡剪切流变法研究了在煤软化阶段使用高达20℃min〜1的加热速率,以改善两种焦煤与苏格兰松树的二元共混物的流体特性。 。还研究了生物质浓度和粒度,生物质干烧,颗粒质量和共混物的热处理对流动性发展和半焦强度的影响。流动性随着加热速率的增加和最终温度的增加而增加,以实现快速加热。发现了混合物的最小复数粘度,加热速率和生物质浓度之间的关系,这些关系已被用来提出方程式,以计算对于具有生物质的特定混合物达到最佳流动性所必需的加热速率。所研究生物质的粒径(<500μm和> 500μm)或生物质的焙干度(在N_2中为250℃1 h)对掺混物的流体特性没有很大的影响。颗粒质量增加,并被混合物预热破坏。质量分数为10%的苏格兰松树和快速加热(10℃min〜1)的混合物的半焦强度被证明比单独使用慢速加热(3℃min〜1)的煤的半焦强度高,结果为3减少不可再生碳排放的百分比。

著录项

  • 来源
    《Biomass & bioenergy》 |2013年第9期|295-306|共12页
  • 作者单位

    Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK;

    Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK;

    Institute Nacional del Carbon (INCAR), CSIC, Apartado 73, 33080 Oviedo, Spain;

    Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coal; Biomass; Carbonization; Fluidity; Rheometry;

    机译:煤;生物质碳化;流动性;流变仪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号